Advertisement

Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control

  • Jennifer K. PetersonEmail author
  • Ken Hashimoto
  • Kota Yoshioka
  • Patricia L. Dorn
  • Nicole L. Gottdenker
  • Angela Caranci
  • Lori Stevens
  • Concepcion Zuniga
  • Azael Saldaña
  • Stanley Rodriguez
  • Carlota Monroy
Chagas (M Nolan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Chagas

Abstract

Purpose of Review

In Central America, most new human Trypanosoma cruzi infections (Chagas disease) are vector-borne, primarily by native vector species. Given the importance of vector control in reducing Chagas disease incidence, here, we provide an updated report on the recent advances and the latest research in vector ecology and control in Central America. Our objective is to present a panorama of the current situation that includes vector control program details, recent public health activities and academic research, and current challenges faced by each country and the region as a whole.

Recent Findings

With the elimination of the introduced species Rhodnius prolixus from the region, the primary vector control challenge is control of native species that move between sylvan and domestic environments, namely Triatoma dimidiata and Rhodnius pallescens. These species cannot be eliminated from domestic/peridomestic settings in a sustainable way using insecticide alone, as residual members of domestic populations and/or sylvatic foci allow the species to persistently reinfest following insecticide application. Implementation of integrated, multidisciplinary methods for native vector species control has yielded promising results. In particular, projects using the Ecohealth method have been scaled up and expanded to endemic areas in multiple countries through partnerships between international stakeholders and ministries of health (MoHs). Additionally, the recent description of two new triatomine bug species that were once classified as T. dimidiata may help to tailor vector control methods to interspecies variations, and the discovery of a dark morph of R. pallescens may provide further insight into vector control in Panama. Finally, associations between deforestation and vector T. cruzi infection and abundance in Panama call attention to associations between human land use change and Chagas disease risk.

Summary

The elimination of R. prolixus contributed to significant reductions in human T. cruzi infection incidence in Central America over the past 20 years, but native vector species still pose a significant public health threat. New methods and collaborations present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required to see them through.

Keywords

Chagas disease Triatomine bug Trypanosoma cruzi Central America Rhodnius prolixus Triatoma dimidiata Rhodnius pallescens Vector control Vector ecology Vector-borne disease 

Abbreviations

IPCA

Initiative for Chagas Disease Control in Central America

IPCAM

Initiative for Chagas Disease Control in Central America and Mexico

IRS

Indoor Residual Spraying

MoH

Ministry of Health

PAHO

Pan American Health Organization

Notes

Acknowledgements

The authors thank Mr. Kim Bautista for providing information and data for Chagas disease in Belize, and reviewing the Belize portion of the manuscript; Erick Campos Fuentes of INCIENSA for providing information about Chagas disease in Costa Rica; and Doctor Andrea Urbina for reviewing parts of the manuscript. Dr. Saldaña is a member of the Sistema Nacional de Investigación (SNI), SENACYT, Panamá.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Central Intelligence Agency. The world factbook 2016-17. Washington, D.C.; 2016.Google Scholar
  2. 2.
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–8.CrossRefGoogle Scholar
  3. 3.
    Brummitt N, Lughadha EN. Biodiversity: where’s hot and where’s not. Conserv Biol. 2003;17:1442–8.CrossRefGoogle Scholar
  4. 4.
    Galvão C, Carcavallo R, Rocha DDS, Jurberg J. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003;202:1.CrossRefGoogle Scholar
  5. 5.
    Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordón R, et al. Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). Zookeys. 2018;775:69–95.Google Scholar
  6. 6.
    Caranci AT. Geographic Distribution and Bionomics of Triatoma dimidiata (Reduviidae: Triatominae) in Northern Belize, Central America [PhD]. [Bethesda, Maryland, USA]: Uniformed Services University; 2016.Google Scholar
  7. 7.
    Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, et al. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZK. Pensoft Publishers. 2019;820:51–70.Google Scholar
  8. 8.
    Pellecer MJ, Dorn PL, Bustamante DM, Rodas A, Monroy MC. Vector blood meals are an early indicator of the effectiveness of the ecohealth approach in halting Chagas transmission in Guatemala. Am J Trop Med Hyg. 2013;88:638–44.CrossRefGoogle Scholar
  9. 9.
    Lucero DE, Morrissey LA, Rizzo DM, Rodas A, Garnica R, Stevens L, et al. Ecohealth interventions limit triatomine reinfestation following insecticide spraying in La Brea, Guatemala. Am J Trop Med Hyg. 2013;88:630–7.CrossRefGoogle Scholar
  10. 10.
    Monroy C, Marroquin R, Rodas A, Rosales R, Jaenson TGT. Dispersion and colonization of Triatoma ryckmani (Hemiptera: Reduviidae) in artificial environments in a semiarid region of a Chagas disease endemic area in Guatemala. Acta Trop. 2004;91:145–51.CrossRefGoogle Scholar
  11. 11.
    Tabaru Y, Monroy C, Rodas A, Mejia M, Rosales R. The geographical distribution of vectors of Chagas’ disease and populations at risk of infection in Guatemala. Medical Entomology and Zoology. 1999;50:9–17.CrossRefGoogle Scholar
  12. 12.
    • Lima-Cordón RA, Stevens L, Ortíz ES, Rodas GA, Castellanos S, Rodas A, et al. Implementation science: epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Negl Trop Dis. 2018;12:e0006952 In this work, researchers identified regional variation in Chagas disease epidemiological scenarios with T. dimidiata as the primary vector species. Epidemiological characteristics that are unique to each country are identified and described, including bug feeding preferences on humans.CrossRefGoogle Scholar
  13. 13.
    Díaz Cruz SJ. Caracterización de hábitos alimentarios en Triatoma dimidiata mediante la técnica de PCR forense en el municipio de Texistepeque, departamento de Santa Ana [Internet] [Bachelor of Science ]. University of El Salvador; 2017. Available from: http://ri.ues.edu.sv/id/eprint/13951/.
  14. 14.
    Castillo Ayala K. Triatoma ryckmani (Zeledón y Ponce, 1972; Hemiptera: Reduviidae) en ambientes domiciliares de El Salvador [Internet]. Congreso Nacional sobre la Enfermedad de Chagas ; July 8th and 9th, 2016. Available from: http://www.cienciaytecnologia.edu.sv/eventos_realizados/Presentaciones%20del%20Congreso%20de%20Chagas%20en%20PDF/t.ryckmani%20en%20ambientes%20domiciliares%20de%20SV.pdf. Accessed 20 Feb 2019.
  15. 15.
    Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018;12:e0006730.Google Scholar
  16. 16.
    • Yoshioka K, Provedor E, Manne-Goehler J. The resilience of Triatoma dimidiata: An analysis of reinfestation in the Nicaraguan Chagas disease vector control program (2010–2016). PLoS One. 2018;13:e0202949 In this work, the failure of insecticide-based control measures to sustainably reduce T. dimidiata infestation in Nicaragua is presented and analyzed. It is one of the only studies of Chagas disease in Nicaragua in recent years.CrossRefGoogle Scholar
  17. 17.
    Bonilla MC, Herrero-Acosta MV, Urbina-Villalobos A, Dolz G. Detección de anticuerpos contra Trypanosoma cruzi en caninos de Costa Rica. Revista Ciencias Veterinarias 2018;1.Google Scholar
  18. 18.
    Zuriaga MÁ, Blandón-Naranjo M, Valerio-Campos I, Salas R, Zeledón R, Bargues MD. Molecular characterization of Trypanosoma cruzi and infection rate of the vector Triatoma dimidiata in Costa Rica. Parasitol Res. 2012;111:1615–20.CrossRefGoogle Scholar
  19. 19.
    Mehrkens LR, Shender LA, Yabsley MJ, Shock BC, Chinchilla FA, Suarez J, et al. White-nosed coatis (Nasua narica) are a potential reservoir of Trypanosoma cruzi and other potentially zoonotic Pathogens in Monteverde, Costa Rica. J Wildl Dis. 2013;49:1014–8.CrossRefGoogle Scholar
  20. 20.
    Bonilla M, Di Mare-Hering MI, Castro-Vázquez RM, Dolz G. Especies de Trypanosoma presentes en animales silvestres de Costa Rica [Internet]. 2018. Available from: https://www.researchgate.net/publication/327351158_Especies_de_Trypanosoma_presentes_en_animales_silvestres_de_Costa_Rica. Accessed 25 Jan 2019.
  21. 21.
    Rubi R, Urbina A, Dolz G, Acosta MH. Murciélagos generalistas de Costa Rica: descripción macro-ambiental de sitios de captura, características del hospedero y caracterización molecular de Leishmania spp. y Trypanosoma spp [Internet]. 2017. Available from: https://www.researchgate.net/publication/325177542_Murcielagos_generalistas_de_Costa_Rica_descripcion_macroambiental_de_sitios_de_captura_caracteristicas_de_hospedero_y_caracterizacion_molecular_de_Leishmania_spp_y_Trypanosoma_spp. Accessed 18 Jan 2018.
  22. 22.
    Saldaña A, Santamaría AM, Pineda V, Vásquez V, Gottdenker NL, Calzada JE. A darker chromatic variation of Rhodnius pallescens infected by specific genetic groups of Trypanosoma rangeli and Trypanosoma cruzi from Panama. Parasit Vectors. 2018;11:423.CrossRefGoogle Scholar
  23. 23.
    • Rodríguez IG, Saldaña A, González K, Pineda V, Perea M, Santamaría AM, et al. Trypanosoma cruzi infection in Rhodnius pallescens (Heteroptera: Reduviidae) infesting coyol palms in the dry arch of Panamá. J Med Entomol. 2018;55:691–700 In this work, R. pallescens infected with T. cruzi is described for the first time in the Azuero Peninsula region of Panama. Additionally, the species was found infesting a palm species in which it had never before been found, as it had been found only infesting A. butryacea palms. The findings suggest that R. pallescens may be more widely distributed in Panama than previously believed.CrossRefGoogle Scholar
  24. 24.
    Gottdenker NL, Calzada JE, Saldaña A, Carroll CR. Association of anthropogenic land use change and increased abundance of the Chagas disease vector Rhodnius pallescens in a rural landscape of Panama. Am J Trop Med Hyg. 2011;84:70–7.CrossRefGoogle Scholar
  25. 25.
    Gottdenker NL, Chaves LF, Calzada JE, Saldaña A, Carroll CR. Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. Gürtler RE, editor. PLoS Negl Trop Dis. 2012;6:e1884.CrossRefGoogle Scholar
  26. 26.
    Mata Somarribas C, Calvo Fonseca N. Morfología distintiva y clave pictórica para la subfamilia Triatominae (Hemiptera: Reduviidae) en América Central. Instituto Costarricense de Investigación y Enseñaza en Nutrición y Salud (INCIENSA); 2015.Google Scholar
  27. 27.
    Unidad de Vigilancia de la Salud, Secretaría de Salud, Gobierno de la República de Honduras. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; Tegucigalpa Honduras, 29 al 31 de Octubre de 2018.Google Scholar
  28. 28.
    Ponce C. Current situation of Chagas disease in Central America. Mem Inst Oswaldo Cruz. 2007;102:41–4.CrossRefGoogle Scholar
  29. 29.
    Peterson JK, Yoshioka K, Hashimoto K, Caranci A, Gottdenker N, Monroy C, et al. An update on the epidemiology of Chagas disease in Central America. Current Tropical Medicine Reports. 2019Google Scholar
  30. 30.
    Organización Panamericana de la Salud. Informe de la primera reunión de la comisión intergubernamental de la iniciativa de Centroamerica y Belize para la interrupción de la transmisión vectorial de la enfermedad de Chagas por Rhodnius prolixus , disminución de la infestación domiciliaria por Triatoma dimidiata , y eliminación de la transmisión transfusional del Trypanosoma cruzi. 1999. Report No.: OPS/HCP/HCT/145/99.Google Scholar
  31. 31.
    Zeledón R. Some historical facts and recent issues related to the presence of Rhodnius prolixus (Stal 1859) (Hemiptera:Reduviidae) in Central America. Entomología y Vectores. 2004;11:233–46.Google Scholar
  32. 32.
    Dias JCP. Evolution of Chagas disease screening programs and control programs: historical perspective. Glob Heart. 2015;10:193–202.CrossRefGoogle Scholar
  33. 33.
    Organización Panamericana de la Salud. La enfermedad de Chagas en El Salvador, evolución historica y desafíos para el control. San Salvador, El Salvador.: OPS.; 2010.Google Scholar
  34. 34.
    World Health Organization. Chagas disease in Latin America: an epidemiological update based on the 2010 estimates. Wkly Epidemiol Rec. 2015;6:33–44.Google Scholar
  35. 35.
    Organización Panamericana de la Salud. Estimación cuantitativa de la enfermedad de Chagas en Las Américas. 2006. Report No.: OPS/HDM/CD/425–06.Google Scholar
  36. 36.
    Organización Panamericana de la Salud. Conclusiones y Recomendaciones de la décimo octava reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y Mexico (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional, y Atención Médica de la Enfermedad de Chagas. Tegucigalpa, Honduras; Octubre de 2018.Google Scholar
  37. 37.
    Hashimoto K, Cordon-Rosales C, Trampe R, Kawabata M. Impact of single and multiple residual sprayings of pyrethroid insecticides against Triatoma dimidiata (Reduviidae: Triatominae), the principal vector of Chagas disease in Jutiapa, Guatemala. Am J Trop Med Hyg. 2006;75:226–30.CrossRefGoogle Scholar
  38. 38.
    Dumonteil E, Ruiz-Piña H, Rodriguez-Félix E, Barrera-Pérez M, Ramirez-Sierra MJ, Rabinovich JE, et al. Re-infestation of houses by Triatoma dimidiata after intradomicile insecticide application in the Yucatán Peninsula. Mexico Mem Inst Oswaldo Cruz. 2004;99:253–6.Google Scholar
  39. 39.
    Nakagawa J, Hashimoto K, Cordón-Rosales C, Abraham Juárez J, Trampe R. Marroquín Marroquín L. The impact of vector control on Triatoma dimidiata in the Guatemalan department of Jutiapa. Ann Trop Med Parasitol. 2003;97:288–97.CrossRefGoogle Scholar
  40. 40.
    Nakagawa J, Cordón-Rosales C, Juárez J, Itzep C, Nonami T. Impact of residual spraying on Rhodnius prolixus and Triatoma dimidiata in the department of Zacapa in Guatemala. Mem Inst Oswaldo Cruz. 2003;98:277–82.CrossRefGoogle Scholar
  41. 41.
    Manne J, Nakagawa J, Yamagata Y, Goehler A, Brownstein JS, Castro MC. Triatomine infestation in Guatemala: spatial assessment after two rounds of vector control. Am J Trop Med Hyg. 2012;86:446–54.CrossRefGoogle Scholar
  42. 42.
    • Juarez JG, Pennington PM, Bryan JP, Klein RE, Beard CB, Berganza E, et al. A decade of vector control activities: Progress and limitations of Chagas disease prevention in a region of Guatemala with persistent Triatoma dimidiata infestation. Attardo GM, editor. PLoS Negl Trop Dis. 2018;12:e0006896 In this work, the extensive Chagas disease control efforts in a critical Chagas disease transmission hotspot in Guatemala are summarized and discussed, in addition to providing new data.CrossRefGoogle Scholar
  43. 43.
    Yoshioka K, Nakamura J, Pérez B, Tercero D, Pérez L, Tabaru Y. Effectiveness of large-scale Chagas disease vector control program in Nicaragua by residual insecticide spraying against Triatoma dimidiata. Am J Trop Med Hyg. 2015;93:1231–9.CrossRefGoogle Scholar
  44. 44.
    Hashimoto K, Zúniga C, Nakamura J, Hanada K. Integrating an infectious disease programme into the primary health care service: a retrospective analysis of Chagas disease community-based surveillance in Honduras. BMC Health Serv Res [Internet]. 12/2015 [cited 2018 Jun 18];15. Available from: http://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-015-0785-4. Accessed 7 Feb 2019.
  45. 45.
    Hashimoto K, Zúniga C, Romero E, Morales Z, Maguire JH. Determinants of health service responsiveness in community-based vector surveillance for Chagas disease in Guatemala, El Salvador, and Honduras. PLoS Negl Trop Dis. 2015;9:e0003974.CrossRefGoogle Scholar
  46. 46.
    Yoshioka K, Tercero D, Pérez B, Nakamura J, Pérez L. Implementing a vector surveillance-response system for chagas disease control: a 4-year field trial in Nicaragua. Infectious Diseases of Poverty [Internet]. 12/2017 [cited 2018 Sep 20];6. Available from: http://idpjournal.biomedcentral.com/articles/10.1186/s40249-016-0225-7
  47. 47.
    Dorn PL, Monroy C, Curtis A. Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationship among populations. Infect Genet Evol. 2007;7:343–52.CrossRefGoogle Scholar
  48. 48.
    Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, et al. The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol. 2001;18:136–42.CrossRefGoogle Scholar
  49. 49.
    Dorn PL, Calderon C, Melgar S, Moguel B, Solorzano E, Dumonteil E, et al. Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS Negl Trop Dis. 2009;3:e393.Google Scholar
  50. 50.
    Monteiro FA, Peretolchina T, Lazoski C, Harris K, Dotson EM, Abad-Franch F, et al. Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata. PLoS One. 2013;8:e70974.Google Scholar
  51. 51.
    • Dorn PL, de la Rúa NM, Axen H, Smith N, Richards BR, Charabati J, et al. Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, Triatoma dimidiata (Latreille, 1811), across its geographic range. Infect Genet Evol. 2016;44:431–43 This was the first study to statistically test hypotheses generated in prior studies on the evolution and systematics of Triatoma dimidiata. Testing was carried out using new datasets with a large taxon sample representing the whole geographic range of T. dimidiata . The best supported hypothesis revealed that T. dimidiata is likely composed of at least three species— T. dimidiata sensu strictu, and two new cryptic species, which were later described as T. huehuetenanguensis and T. mopan.CrossRefGoogle Scholar
  52. 52.
    Justi SA, Cahan S, Stevens L, Monroy C, Lima-Cordón R, Dorn PL. Vectors of diversity: genome wide diversity across the geographic range of the Chagas disease vector Triatoma dimidiata sensu lato (Hemiptera: Reduviidae). Mol Phylogenet Evol. 2018;120:144–50.CrossRefGoogle Scholar
  53. 53.
    García M, Menes M, Dorn PL, Monroy C, Richards B, Panzera F, et al. Reproductive isolation revealed in preliminary crossbreeding experiments using field collected Triatoma dimidiata (Hemiptera: Reduviidae) from three ITS-2 defined groups. Acta Trop. 2013;128:714–8.Google Scholar
  54. 54.
    Waleckx E, Gourbière S, Dumonteil E. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Mem Inst Oswaldo Cruz. 2015;110:00–00.Google Scholar
  55. 55.
    Monroy C, Castro X, Bustamante DM, Pineda SS, Rodas A, Moguel B, et al. An ecosystem approach for the prevention of Chagas disease in rural Guatemala. In: Charron DF, editor. Ecohealth research in practice: Innovative applications of an ecosystem approach to health. Ottawa, New York: Springer; 2012. p. 153–62.CrossRefGoogle Scholar
  56. 56.
    Organización Panamericana de la Salud. Informe de la tercera reunión de la comisión intergubernamental de la iniciativa de Centroamérica y Belice para la interrupción de la transmisión vectorial de la enfermedad de Chagas por Rhodnius prolixus, disminución de la infestación domiciliaria por Triatoma dimidiata, y eliminación de la transmisión transfusional del Trypanosoma cruzi. 2001.Google Scholar
  57. 57.
    Petana WB. American trypanosomiasis in British Honduras. X. Natural habitats and ecology of Triatoma dimidiata (Hemiptera, Reduviidae) in the El Cayo and Toledo districts, and the prevalence of infection with Trypanosoma (Schizotrypanum) cruzi in the wild-caught bugs. Ann Trop Med Parasitol. 1971;65:169–78.CrossRefGoogle Scholar
  58. 58.
    Polonio R, Ramirez-Sierra MJ, Dumonteil E. Dynamics and distribution of house infestation by Triatoma dimidiata in central and southern Belize. Vector Borne Zoonotic Dis. 2009;9:19–24.CrossRefGoogle Scholar
  59. 59.
    Herrera M. Chagas disease surveillance among blood donors Belize, 2010-2016. Belize Ministry of Health; 2017.Google Scholar
  60. 60.
    Organización Panamericana de la Salud. Informe de la XIV Reunión de la Comisión Intergubernamental de la Iniciativa de los Países de Centroamérica (IPCA) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas. Ciudad de Belice, Belice; Noviembre 13-14, 2012.Google Scholar
  61. 61.
    Stevens L, Monroy MC, Rodas AG, Dorn PL. Hunting, swimming, and worshiping: human cultural practices illuminate the blood meal sources of cave dwelling Chagas vectors (Triatoma dimidiata) in Guatemala and Belize. PLoS Negl Trop Dis. 2014;8:e3047.CrossRefGoogle Scholar
  62. 62.
    Nouvellet P, Dumonteil E, Gourbière S. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease. PLoS Negl Trop Dis. 2013;7:e2505.CrossRefGoogle Scholar
  63. 63.
    Ministerio de Salud Pública y Asistencia Social, Centro Nacional de Epidemiología, Departamento de Vigilancia Epidemiológica. Memoria de labores 2017. Guatemala Ministerio de Salud Pública y Asistencia Social.Google Scholar
  64. 64.
    Ministerio de Salud Pública y Asistencia Social, Centro Nacional de Epidemiología, Departamento de Vigilancia Epidemiológica. Memoria de labores 2016. Guatemala Ministerio de Salud Pública y Asistencia Social.Google Scholar
  65. 65.
    Solórzano Ortiz E, Monroy Escobar MC, Carrillo Amaya KA, Zúniga C, Bazzani R. Situación actual de la enfermedad de Chagas en Centro América y Mexico. Laboratorio de Entomología Aplicada y Parasitología, Universidad de San Carlos de Guatemala, International Development Research Center; Guatemala, 2016.Google Scholar
  66. 66.
    Ministerio de Salud Pública y Asistencia Social, Centro Nacional de Epidemiología, Departamento de Vigilancia Epidemiológica. Memoria de labores 2015. Guatemala Ministerio de Salud Pública y Asistencia Social; 2015.Google Scholar
  67. 67.
    Ministerio de Salud Gobierno de El Salvador. Enfermedad de Chagas, casos agudos, El Salvador 2014-2017. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; 29 -31 de Octubre de 2018. Tegucigalpa, Honduras.Google Scholar
  68. 68.
    Nicaragua Ministerio de Salud. Antecedentes, situación actual, avances hacia la eliminación y perspectivas de control de la Enfermedad de Chagas en Nicaragua. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; 29 -31 de Octubre de 2018. Tegucigalpa, Honduras.Google Scholar
  69. 69.
    Monroy C. Universidad de San Carlos de Guatemala. Triatoma dimidiata. Su situación como vector y su control. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; 29 -31 de Octubre de 2018. Tegucigalpa, Honduras.Google Scholar
  70. 70.
    Abad-Franch F, Diotaiuti L, Gurgel-Gonçalves R, Gürtler RE. Certifying the interruption of Chagas disease transmission by native vectors: cui bono? Mem Inst Oswaldo Cruz. 2013;108:251–4.CrossRefGoogle Scholar
  71. 71.
    Charron DF. Ecohealth research in practice: innovative applications of an ecosystem approach to health. Ottawa, New York: International Development Research Centre ; Springer; 2012.CrossRefGoogle Scholar
  72. 72.
    Monroy C, Bustamante DM, Pineda S, Rodas A, Castro X, Ayala V, et al. House improvements and community participation in the control of Triatoma dimidiata re-infestation in Jutiapa, Guatemala. Cadernos de Saúde Pública. 2009;25:S168–78.Google Scholar
  73. 73.
    Méndez M. Evaluación de la Relación Beneficio-Costo al comparar intervenciones tradicionales y ecosistémicas realizadas para el control de los vectores de la enfermedad de Chagas en la aldea La Brea, a lo largo de diez años. Primera parte, comprende el periodo del 2000 al 2004. Evaluación Ex ante. Facultad de Ingeniería, Universidad de San Carlos ; Guatemala, Marzo de 2008.Google Scholar
  74. 74.
    Méndez M. Evaluación de la Relación Beneficio-Costo al comparar intervenciones tradicionales y eco sistémicas realizadas para el control de los vectores de la enfermedad de Chagas en la aldea La Brea, a lo largo de diez años. Segunda parte, comprende el periodo del 2005 al 2009. Facultad de Ingeniería, Universidad de San Carlos ; Guatemala Noviembre 2009.Google Scholar
  75. 75.
    Preventing Chagas in Central America through simple home improvements [Internet]. International Research Development Center (IRDC). 2016 [cited 2019 Feb 6]. Available from: https://www.idrc.ca/en/article/preventing-chagas-central-america-through-simple-home-improvements. Accessed 1 Feb 2019.
  76. 76.
    Bustamante DM, De Urioste-Stone SM, Juarez JG, Pennington PM. Ecological, social and biological risk factors for continued Trypanosoma cruzi transmission by Triatoma dimidiata in Guatemala. PLoS One [Internet]. 2014;9. Available from:  https://doi.org/10.1371/journal.pone.0104599
  77. 77.
    Alliances for Chagas elimination in Central America [Internet]. IDRC - International Development Research Centre. 2019 [cited 2019 Feb 7]. Available from: https://www.idrc.ca/en/project/alliances-chagas-elimination-central-america. Accessed 18 June 2018.
  78. 78.
    Lent H, Wygodzinsky Z. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bull Am Mus Nat Hist. 1979;163:1–520.Google Scholar
  79. 79.
    Organización Panamericana de la Salud/Secretaría de Salud Honduras. Plan estratégico nacional de Chagas 2003-2007 [Internet]. Tegucigalpa: OPS/ Secretaría de Salud Honduras.; 2003. Available from: https://www.paho.org/hq/dmdocuments/2011/Plan-estrategico-Nac-chagas-2003-2007.pdf. Accessed 18 June 2018.
  80. 80.
    Secretaría de Salud de Honduras, Dirección General de Promoción de la Salud, Programa Nacional de Prevención y Control, de la Enfermedad Chagas y la Agencia de Cooperación Internacional del Japón (JICA). Informe final del proyecto de control de la enfermedad de Chagas fase 2 (2008-2011) [Internet]. Tegucigalpa, Honduras; 2011. Available from: https://www.jica.go.jp/project/honduras/0701409/04/pdf/oritect_fase2_01.pdf. Accessed 8 Nov 2013.
  81. 81.
    Japanese International Cooperation Agency. Buenas prácticas en el control de la enfermedad de Chagas en Guatemala, El Salvador, Honduras y Nicaragua 2000–2014 [Internet]. 2014. Available from: http://c3.usac.edu.gt/lenap.usac.edu.gt/public_html/wp-content/uploads/2014/03/Buenas-Practicas-Chagas-GUT-ELS-HON-NIC-2000-2014-para-Web.pdf. Accessed 6 Feb 2018.
  82. 82.
    Hashimoto K, Yoshioka K. Surveillance of Chagas disease. Advances in parasitology. Elsevier; 2012. p. 375–428.Google Scholar
  83. 83.
    Bustamante Zamora DM, Hernández MM, Torres N, de Abrego V, Monroy Escobar MC, Zúniga C, et al. Information to act: household characteristics are predictors of domestic infestation with the Chagas vector Triatoma dimidiata in Central America. Am J Trop Med Hyg. 2015;93:97–107.Google Scholar
  84. 84.
    Cedillos RA, Romero JE, Sasagawa E. Elimination of Rhodnius prolixus in El Salvador, Central America. Mem Inst Oswaldo Cruz. 2012;107:1068–9.CrossRefGoogle Scholar
  85. 85.
    Hashimoto K, Schofield CJ. Elimination of Rhodnius prolixus in Central America. Parasit Vectors. 2012;5:45.CrossRefGoogle Scholar
  86. 86.
    Central Intelligence Agency. El Salvador. The World Factbook 2016-17. Washington, D.C.; 2016.Google Scholar
  87. 87.
    Ministerio de Salud El Salvador. Vigilancia y Control de la Enfermedad de Chagas. El Salvador 2014 [Internet]. Miniforo CYTED IBEROEKA; May 29–30, 2014. San Salvador, El Salvador. Available from: http://www.cienciaytecnologia.edu.sv/miniForo/Ing.%20Jose%20Eduardo%20Romero%20Chevez%20.pdf. Accessed 28 jan 2019.
  88. 88.
    Lugo E, Marín F. Resultados de una encuesta entomológica de triatominos (Heteroptera:Reduviidae) realizada en 15 departamentos de Nicaragua, 1998-1999. Revista Nicaragüense de Entomología. 2005;65:1–12.Google Scholar
  89. 89.
    Yoshioka K, Tercero D, Pérez B, Lugo E. Rhodnius prolixus en Nicaragua: distribución geográfica, control y vigilancia entre 1998 y 2009. Rev Panam Salud Publica. 2011;30:439–44.CrossRefGoogle Scholar
  90. 90.
    Ministerio de Salud, Nicaragua (MINSA), Agencia de Cooperación Internacional de Japón (JICA). Informe final del proyecto para el fortalecimiento de las actividades de vigilancia y control de la enfermedad de Chagas en Nicaragua (2009-2014) [Internet]. 2014. Available from: https://www.jica.go.jp/project/nicaragua/001/materials/ku57pq0000126ws5-att/informe_final_proyecto_chagas.pdf. Accessed 7 Feb 2019.
  91. 91.
    Zeledón R, Marín F, Calvo N, Lugo E, Valle S. Distribution and ecological aspects of Rhodnius pallescens in Costa Rica and Nicaragua and their epidemiological implications. Mem Inst Oswaldo Cruz. 2006;101:75–9.CrossRefGoogle Scholar
  92. 92.
    Marín F, Lugo E, Valle S, Zeledón R. Notes on Rhodnius pallescens , Triatoma ryckmani and four other species of triatomines from Nicaragua. Ann Trop Med Parasitol. 2006;100:181–6.CrossRefGoogle Scholar
  93. 93.
    Zeledón R, Ponce C, Méndez-Galván JF. Epidemiological, social, and control determinants of Chagas disease in Central America and Mexico - Group discussion. Memorias do Instituto Oswaldo Cruz 2007;102:45–6.Google Scholar
  94. 94.
    Nicaragua Ministerio de Salud. Resumen de Avances 2012 Nicaragua. XV Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; 22 de Octubre de 2013. Ciudad de Mexico, Mexico.Google Scholar
  95. 95.
    Abad-Franch F, Vega MC, Rolón MS, Santos WS, Rojas de Arias A. Community participation in Chagas disease vector surveillance: systematic review. PLoS Negl Trop Dis [Internet]. 2011;5. Available from:  https://doi.org/10.1371/journal.pntd.0001207.
  96. 96.
    Zeledón R, Ugalde J, Paniagua L. Entomological and ecological aspects of six sylvatic species of triatomines (Hemiptera, Reduviidae) from the collection of the National Biodiversity Institute of Costa Rica, Central America. Mem Inst Oswaldo Cruz. 2001;96:757–64.CrossRefGoogle Scholar
  97. 97.
    Zeledón R, Morales JA, Scally M, Torres J, Alfaro S, Gutiérrez H, et al. Hallazgo de Rhodnius pallescens Barber, 1932 (Reduviidae: Triatominae) en Palmeras (Attalea butyracea) en el norte de Costa Rica. Boletín de Malariología y Salud Ambiental. Instituto de Altos Estudios en Salud Pública Dr. Arnoldo Gabaldon; 2006;46:15–20.Google Scholar
  98. 98.
    Marín RE, Vargas M. Rhodnius pallescens (Hemiptera: Reduviidae) in Costa Rica. J Med Entomol. 1986;23:333.CrossRefGoogle Scholar
  99. 99.
    Costa Rica Ministerio de Salud. Norma de atención integral de la enfermedad de Chagas [Internet]. 2012. Report No.: CIE-10:B57. Available from: http://www.inciensa.sa.cr/vigilancia_epidemiologica/Protocolos_Vigilancia/37269%20Norma%20Atencion%20Integral%20de%20la%20Enfermedad%20de%20Chagas.pdf.Accessed 22 Jan 2019.
  100. 100.
    CNRP-INCIENSAS. Casos agudos de Enfermedad de Chagas. Costa Rica 2003-2018, CNRP. 2018.Google Scholar
  101. 101.
    Costa Rica Ministerio de Salud. Memoria Institucional 2014–2018. San Jose, Costa Rica: El Ministerio; 2018.Google Scholar
  102. 102.
    Zeledón R, Rojas JC. Environmental management for the control of Triatoma dimidiata (Latreille, 1811), (Hemiptera: Reduviidae) in Costa Rica: a pilot project. Mem Inst Oswaldo Cruz. 2006;101:379–86.CrossRefGoogle Scholar
  103. 103.
    Zeledón R, Rojas JC, Urbina A, Cordero M, Gamboa SH, Lorosa ES, et al. Ecological control of Triatoma dimidiata (Latreille, 1811): five years after a Costa Rican pilot project. Mem Inst Oswaldo Cruz. 2008;103:619–21.CrossRefGoogle Scholar
  104. 104.
    Argüello-Sáenz M, Herrero MV, Urbina A, Dolz G. Infestación domiciliar y peridomiciliar de Triatoma dimidiata, vector de la enfermedad de Chagas, en una comunidad periurbana en Heredia, Costa Rica. Escuela Medicina Veterinaria, Universidad Nacional de Costa Rica; 2015. Available from: https://www.researchgate.net/publication/283346394_1_Arguello-Saenz_M_Herrero_MV_Urbina_A_Dolz_G_Infestacion_domiciliar_y_peridomiciliar_de_Triatoma_dimidiata_vector_de_la_enfermedad_de_Chagas_en_una_comunidad_periurbana_en_Heredia_Costa_Rica. Accessed 18 June 2018.
  105. 105.
    Zeledón R, Calvo N, Montenegro VM, Lorosa ES, Arévalo C. A survey on Triatoma dimidiata in an urban area of the province of Heredia, Costa Rica. Mem Inst Oswaldo Cruz. 2005;100:507–12.CrossRefGoogle Scholar
  106. 106.
    WHO Expert Commitee on the Control of Chagas disease (2000: Brasilia B. Control of Chagas disease: second report of the WHO expert committee. WHO Technical Report series. 2002;Google Scholar
  107. 107.
    Ponce C. Elimination of the vectorial transmission of Chagas disease in Central American countries: Honduras. Mem Inst Oswaldo Cruz. 1999;94(Suppl 1):417–8.CrossRefGoogle Scholar
  108. 108.
    Guzman-Tapia Y, Ramírez-Sierra MJ, Dumonteil E. Urban infestation by Triatoma dimidiata in the City of Mérida, Yucatán, México. Vector Borne Zoonotic Dis. 2007;7:597–606.CrossRefGoogle Scholar
  109. 109.
    Chinchilla M, Castro A, Reyes L, Guerrero O, Calderó N, Arguedas O, Troyo A. Enfermedad de Chagas en Costa Rica: Estudio comparativo en dos épocas diferentes. Parasitología latinoamericana [Internet]. 12/2006 [cited 2018 Oct 7];61. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-77122006000200007&lng=en&nrm=iso&tlng=en. Accessed 18 June 2018.
  110. 110.
    Lizundia R, Picado A, Cordero M, Calderón A, Deborggraeve S, Montenegro VM, et al. Molecular and serological rapid tests as markers of Trypanosoma cruzi infection in dogs in Costa Rica. Trop Parasitol. 2014;4:111–4.CrossRefGoogle Scholar
  111. 111.
    Zeledón R, Solano G, Burstin L, Swartzwelder JC. Epidemiological pattern of Chagas’ disease in an endemic area of Costa Rica *. Am J Trop Med Hyg. 1975;24:214–25.CrossRefGoogle Scholar
  112. 112.
    Montenegro VM, Jiménez M, Dias JCP, Zeledón R. Chagas disease in dogs from endemic areas of Costa Rica. Mem Inst Oswaldo Cruz. 2002;97:491–4.CrossRefGoogle Scholar
  113. 113.
    CalderóN-Arguedas O, Troyo A, Castro A, Guerrero O, Chinchilla M. Infestación por vectores de la Enfermedad de Chagas en cuatro zonas endémicas de la meseta central de Costa Rica. Parasitología latinoamericana [Internet]. 07/2002 [cited 2018 Oct 13];57. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-77122002000300002&lng=en&nrm=iso&tlng=en. Accessed 17 Jan 2018.
  114. 114.
    Chinchilla M. Hallazgo de dos nuevos reservorios de la Enfermedad de Chagas en Costa Rica. Acta Med Costarric. 1966;9:165–6.Google Scholar
  115. 115.
    Ferguson L. Tourism development and the restructuring of social reproduction in Central America. Rev Int Polit Econ. 2010;17:860–88.CrossRefGoogle Scholar
  116. 116.
    Carter YL, Juliano JJ, Montgomery SP, Qvarnstrom Y. Acute Chagas disease in a returning traveler. Am J Trop Med Hyg. 2012;87:1038–40.CrossRefGoogle Scholar
  117. 117.
    Méndez E, Sousa OE. Identificación y distribución de los triatominos de Panamá (Hemiptera: Reduviidae: Triatominae). Rev Med Panamá. 1979;4:258–80.Google Scholar
  118. 118.
    Padukone A. Relationships between microhabitat characteristics and the abundance of a Chagas disease vector, Rhodnius pallescens, in Central Panama [Bachelor of Science]. Princeton University; 2016.Google Scholar
  119. 119.
    Calzada JE, Pineda V, Montalvo E, Alvarez D, Santamaría AM, Samudio F, et al. Human trypanosome infection and the presence of intradomicile Rhodnius pallescens in the western border of the Panama Canal, Panama. Am J Trop Med Hyg. 2006;74:762–5.CrossRefGoogle Scholar
  120. 120.
    Saldaña A, Pineda V, Martinez I, Santamaria G, Santamaria AM, Miranda A, et al. A new endemic focus of Chagas disease in the northern region of Veraguas Province, Western Half Panama, Central America. PLoS One. 2012;7:e34657.Google Scholar
  121. 121.
    Sousa OE. Anotaciones sobre la enfermedad de Chagas en Panamá. Frecuencia y distribución de Trypanosoma cruzi y Trypanosoma rangeli. Rev Biol Trop. 1972;20:167–79.Google Scholar
  122. 122.
    Roberto Salvatella, Programa Regional de Chagas, Organización Panamaericana de Salud (ops)/Organización Mundial de Salud (OMS). Informe del estado de avances 2017-2018 de la situación epidemiológica y de control de la Enfermedad de Chagas. Renovación de metas y objetivos de IPCAM: prevención, control y atención médica de la enfermedad de Chagas. Décimo Octava Reunión de la Comisión Intergubernamental (CI) de la Iniciativa de los Países de Centroamérica y México (IPCAM) para la Interrupción de la Transmisión Vectorial, Transfusional y Atención Médica de la Enfermedad de Chagas; 29 al 31 de Octubre de 2018. Tegucigalpa, Honduras.Google Scholar
  123. 123.
    Gottdenker NL, Chaves LF, Calzada JE, Peterson JK, Santamaría A, Pineda V, et al. Trypanosoma cruzi and Trypanosoma rangeli co-infection patterns in insect vectors vary across habitat types in a fragmented forest landscape. Parasitology Open [Internet]. 2016 [cited 2019 Jan 21];2. Available from: http://www.journals.cambridge.org/abstract_S2055709416000091. Accessed 7 Feb 2019.
  124. 124.
    Pan American Health Organization. EMTCT plus. Framework for elimination of mother-to- child transmission of HIV, syphilis, hepatitis B, and Chagas. Washington, D.C.: PAHO; 2017.Google Scholar
  125. 125.
    Moriana S, Ortiz G, Fanjul G. Breaking the silence: an opportunity for patients with Chagas disease [Internet]. Chagas Disease Global Coalition; 2016 Aug. Available from: http://www.coalicionchagas.org/documents/5415804/5524305/breaking+the+silence_report/65091404-85cf-4796-bebb-64c120a26216. Accessed 7 Feb 2019.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jennifer K. Peterson
    • 1
    Email author
  • Ken Hashimoto
    • 2
  • Kota Yoshioka
    • 3
  • Patricia L. Dorn
    • 4
  • Nicole L. Gottdenker
    • 5
  • Angela Caranci
    • 6
  • Lori Stevens
    • 7
  • Concepcion Zuniga
    • 8
  • Azael Saldaña
    • 9
  • Stanley Rodriguez
    • 10
  • Carlota Monroy
    • 11
  1. 1.Department of Biostatistics, Epidemiology & Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Independent scholarKakogawaJapan
  3. 3.Harvard T.H. Chan School of Public HealthBostonUSA
  4. 4.Department of Biological SciencesLoyola University New OrleansNew OrleansUSA
  5. 5.Department of Veterinary PathologyUniversity of Georgia College of Veterinary MedicineAthensUSA
  6. 6.Northwest Mosquito and Vector Control DistrictCoronaUSA
  7. 7.Department of BiologyUniversity of VermontBurlingtonUSA
  8. 8.Hospital EscuelaTegucigalpaHonduras
  9. 9.Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES)Panama CityPanama
  10. 10.Centro de Investigación y Desarrollo En Salud CENSALUDUniversidad de El SalvadorSan SalvadorEl Salvador
  11. 11.Laboratory of Applied Entomology and Parasitology (LENAP), Faculty of PharmacySan Carlos UniversityGuatemala CityGuatemala

Personalised recommendations