Advertisement

Current Tropical Medicine Reports

, Volume 4, Issue 4, pp 208–222 | Cite as

Animal Models for Melioidosis

  • Kei Amemiya
  • Joel A. Bozue
  • Christopher K. Cote
  • David Deshazer
  • Carl Soffler
  • Susan L. Welkos
  • Patricia L. WorshamEmail author
Melioidosis and Tropical Bacteriology (A Torres, Section Editor)
  • 64 Downloads
Part of the following topical collections:
  1. Topical Collection on Melioidosis and Tropical Bacteriology

Abstract

Purpose of Review

Development, testing, and evaluation of medical countermeasures for melioidosis are hampered by a lack of well-characterized and standardized animal models. Recent work has both refined existing animal models for this disease and identified new ones.

Recent Findings

Head-to-head comparisons of mouse strains with varying susceptibility to the organism and using different routes of infection highlighted and confirmed important similarities and differences between murine models and exposure routes. Diabetic mouse models provided insight into the disease process in humans having this major risk factor. Large animal models, both livestock and non-human primate, have been established. Alternative (non-mammalian) models have been useful in identification of virulence factors and screening of therapeutic candidates. They hold potential for large-scale screening that would not be appropriate or practical for mammalian species.

Summary

Recent advances in animal and alternative modeling will enhance our understanding of the organism and the disease process, as well as accelerating the development of medical countermeasures.

Keywords

Melioidosis Animal models In vitro models Medical countermeasures Virulence Burkholderia pseudomallei 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Animal research at the United States Army of Medical Research Institute of Infectious Diseases was conducted and approved under an Institutional Animal Care and Use Committee in compliance with the Animal Welfare Act, PHS Policy, and other Federal statutes and regulations relating to animals and experiments involving animals. The facility where this research was conducted is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, National Research Council, 2011.

Disclaimers

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1:15008.  https://doi.org/10.1038/nmicrobiol.2015.8.PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nachiangmai N, Patamasucon P, Tipayamonthein B, Kongpon A, Nakaviroj S. Pseudomonas pseudomallei in southern Thailand. Southeast Asian J Trop Med Public Health. 1985;16:83–7.PubMedGoogle Scholar
  3. 3.
    Fritz PE, Miller JG, Slayter M, Smith TJ. Naturally occurring melioidosis in a colonized rhesus monkey (Macaca mulatta). Lab Anim. 1986;20:281–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Dance DA, King C, Aucken H, Knott CD, West PG, Pitt TL. An outbreak of melioidosis in imported primates in Britain. Vet Rec. 1992;130:525–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Dance DA. Melioidosis: the tip of the iceberg? Clin Microbiol Rev. 1991;4:52–60.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    White NJ. Melioidosis. Lancet. 2003;361(9370):1715–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Ritter JM, Sanchez S, Jones TL, Zaki SR, Drew CP. Neurologic melioidosis in an imported pigtail macaque (Macaca nemestrina). Vet Pathol. 2013;50:1139–44.  https://doi.org/10.1177/0300985813485249.CrossRefPubMedGoogle Scholar
  8. 8.
    Gauthier J, Gerome P, Defez M, Neulat-Ripoll F, Foucher B, Vitry T, et al. Melioidosis in travelers returning from Vietnam to France. Emerg Infect Dis. 2016;22:1671–3.  https://doi.org/10.3201/eid2209.160169.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Currie BJ. Melioidosis: an important cause of pneumonia in residents of and travellers returned from endemic regions. Eur Respir J. 2003;22:542–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Cahn A, Koslowsky B, Nir-Paz R, Temper V, Hiller N, Karlinsky A, et al. Imported melioidosis, Israel, 2008. Emerg Infect Dis. 2009;15:1809–11.  https://doi.org/10.3201/eid1511.090038.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Currie BJ, Fisher DA, Howard DM, Burrow JN, Selvanayagam S, Snelling PL, et al. The epidemiology of melioidosis in Australia and Papua New Guinea. Acta Trop. 2000;74:121–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, Kemp DJ. A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg. 2001;65:177–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M, Currie BJ. Acute melioidosis outbreak in Western Australia. Epidemiol Infect. 1999;123:437–43.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Limmathurotsakul D, Wongsuvan G, Aanensen D, Ngamwilai S, Saiprom N, Rongkard P, et al. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012. Emerg Infect Dis. 2014;20:265–8.  https://doi.org/10.3201/eid2002.121891.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Limmathurotsakul D, Kanoksil M, Wuthiekanun V, Kitphati R, de Stavola B, Day NP, et al. Activities of daily living associated with acquisition of melioidosis in northeast Thailand: a matched case-control study. PLoS Negl Trop Dis. 2013;7:e2072.  https://doi.org/10.1371/journal.pntd.0002072.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Limmathurotsakul D, Thammasart S, Warrasuth N, Thapanagulsak P, Jatapai A, Pengreungrojanachai V, et al. Melioidosis in animals, Thailand, 2006–2010. Emerg Infect Dis. 2012;18:325–7.  https://doi.org/10.3201/eid1802.111347.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Choy JL, Mayo M, Janmaat A, Currie BJ. Animal melioidosis in Australia. Acta Trop. 2000;74:153–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Sprague LD, Neubauer H. Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation. J Vet Med B Infect Dis Vet Public Health. 2004;51:305–20.  https://doi.org/10.1111/j.1439-0450.2004.00797.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Hicks CL, Kinoshita R, Ladds PW. Pathology of melioidosis in captive marine mammals. Aust Vet J. 2000;78:193–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Sutmoller P, Kraneveld FC, Van Der Schaaf A. Melioidosis (Pseudomalleus) in sheep, goats, and pigs on Aruba (Netherland Antilles). J Am Vet Med Assoc. 1957;130:415–7.PubMedGoogle Scholar
  21. 21.
    Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 2008;294:L387–98.  https://doi.org/10.1152/ajplung.00330.2007.CrossRefPubMedGoogle Scholar
  23. 23.
    Dannenberg AM Jr, Scott EM. Melioidosis: pathogenesis and immunity in mice and hamsters. I. Studies with virulent strains of Malleomyces pseudomallei. J Exp Med. 1957;107:153–87.CrossRefGoogle Scholar
  24. 24.
    Leakey AK, Ulett GC, Hirst RG. BALB/c and C57Bl/6 mice infected with virulent Burkholderia pseudomallei provide contrasting animal models for the acute and chronic forms of human melioidosis. Microb Pathog. 1998;24:269–75.  https://doi.org/10.1006/mpat.1997.0179.CrossRefPubMedGoogle Scholar
  25. 25.
    Tan GY, Liu Y, Sivalingam SP, Sim SH, Wang D, Paucod JC, et al. Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in BALB/c and C57Bl/6 mice. J Med Microbiol. 2008;57:508–15.  https://doi.org/10.1099/jmm.0.47596-0.CrossRefPubMedGoogle Scholar
  26. 26.
    Lever MS, Nelson M, Stagg AJ, Beedham RJ, Simpson AJ. Experimental acute respiratory Burkholderia pseudomallei infection in BALB/c mice. Int J Exp Pathol. 2009;90:16–25.  https://doi.org/10.1111/j.1365-2613.2008.00619.x.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Srisurat N, Sermswan RW, Tatawasart U, Wongratanacheewin S. Bacterial loads and antibody responses in BALB/c mice infected with low and high doses of Burkholderia pseudomallei. Am J Trop Med Hyg. 2010;82:1102–5.  https://doi.org/10.4269/ajtmh.2010.09-0567.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Conejero L, Patel N, de Reynal M, Oberdorf S, Prior J, Felgner PL, et al. Low-dose exposure of C57BL/6 mice to Burkholderia pseudomallei mimics chronic human melioidosis. Am J Pathol. 2011;179:270–80.  https://doi.org/10.1016/j.ajpath.2011.03.031.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Massey S, Yeager LA, Blumentritt CA, Vijayakumar S, Sbrana E, Peterson JW, et al. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci Rep. 2014;4:4305.  https://doi.org/10.1038/srep04305.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Welkos SL, Klimko CP, Kern SJ, Bearss JJ, Bozue J, Bernhards RC, et al. Characterization of Burkholderia pseudomallei strains using a murine intraperitoneal infection model and in vitro macrophage assays. PLoS One. 2015;10:e0124667.  https://doi.org/10.1016/j.micpath.2015.07.004.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    • Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, et al. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PloS one. 2017;12:e0172627.  https://doi.org/10.1371/journal.pone.0172627. This study compares two commonly used mouse strains head-to-head using two routes of infection and focusing on histopathology, guiding the choice of mouse models PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Dannenberg AM Jr, Scott EM. Melioidosis: pathogenesis and immunity in mice and hamsters. I. Studies with virulent strains of Malleomyces pseudomallei. J Exp Med. 1958;107:153–66.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Tarlow MJ, Lloyd J. Melioidosis and chronic granulomatous disease. Proc R Soc Med. 1971;64:19–20.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Wong KT, Puthucheary SD, Vadivelu J. The histopathology of human melioidosis. Histopathology. 1995;26:51–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Meumann EM, Cheng AC, Ward L, Currie BJ. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin infect dis : off pub Infect Dis Soc Am. 2012;54:362–9.  https://doi.org/10.1093/cid/cir808.CrossRefGoogle Scholar
  36. 36.
    Saonanon P, Tirakunwichcha S, Chierakul W. Case report of orbital cellulitis and necrotizing fasciitis from melioidosis. Ophthal Plast Reconstr Surg. 2013;29:81–4.  https://doi.org/10.1097/IOP.0b013e318275b601.CrossRefGoogle Scholar
  37. 37.
    Chen PS, Chen YS, Lin HH, Liu PJ, Ni WF, Hsueh PT, et al. Airborne transmission of melioidosis to humans from environmental aerosols contaminated with B. pseudomallei. PLoS negl trop dis. 2015;9:e0003834.  https://doi.org/10.1371/journal.pntd.0003834.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Currie BJ, Jacups SP. Intensity of rainfall and severity of melioidosis. Australia Emerg Infect Dis. 2003;9:1538–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu X, Pang L, Sim SH, Goh KT, Ravikumar S, Win MS, et al. Association of melioidosis incidence with rainfall and humidity, singapore, 2003–2012. Emerg Infect Dis. 2015;21:159–62.  https://doi.org/10.3201/eid2101.140042.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Challacombe JF, Stubben CJ, Klimko CP, Welkos SL, Kern SJ, Bozue JA, et al. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates. PLoS One. 2014;9:e115951.  https://doi.org/10.1371/journal.pone.0115951.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Hassan MR, Pani SP, Peng NP, Voralu K, Vijayalakshmi N, Mehanderkar R, et al. Incidence, risk factors and clinical epidemiology of melioidosis: a complex socio-ecological emerging infectious disease in the Alor Setar region of Kedah, Malaysia. BMC Infect Dis. 2010;10:302.  https://doi.org/10.1186/1471-2334-10-302.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis. 2010;4:e900.  https://doi.org/10.1371/journal.pntd.0000900.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, et al. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg. 2010;82:1113–7.  https://doi.org/10.4269/ajtmh.2010.10-0038.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Currie B. Pseudomonas pseudomallei-insulin interaction. Infect Immun. 1995;63:3745.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Woods DE, Jones AL, Hill PJ. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun. 1993;61:4045–50.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Maniam P, Nurul Aiezzah Z, Mohamed R, Embi N, Hasidah MS. Regulatory role of GSK3beta in the activation of NF-kappaB and modulation of cytokine levels in Burkholderia pseudomallei-infected PBMC isolated from streptozotocin-induced diabetic animals. Trop Biomed. 2015;32:36–48.PubMedGoogle Scholar
  47. 47.
    Williams NL, Morris JL, Rush C, Govan BL, Ketheesan N. Impact of streptozotocin-induced diabetes on functional responses of dendritic cells and macrophages towards Burkholderia pseudomallei. FEMS Immunol Med Microbiol. 2011;61:218–27.  https://doi.org/10.1111/j.1574-695X.2010.00767.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Chin CY, Monack DM, Nathan S. Delayed activation of host innate immune pathways in streptozotocin-induced diabetic hosts leads to more severe disease during infection with Burkholderia pseudomallei. Immunology. 2012;135:312–32.  https://doi.org/10.1111/j.1365-2567.2011.03544.x.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Koh GC, Weehuizen TA, Breitbach K, Krause K, de Jong HK, Kager LM, et al. Glyburide reduces bacterial dissemination in a mouse model of melioidosis. PLoS Negl Trop Dis. 2013;7:e2500.  https://doi.org/10.1371/journal.pntd.0002500.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Chin CY, Monack DM, Nathan S. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity. BMC Genomics. 2010;11:672.  https://doi.org/10.1186/1471-2164-11-672.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Hong EG, Jung DY, Ko HJ, Zhang Z, Ma Z, Jun JY, et al. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab. 2007;293:1687–96.  https://doi.org/10.1152/ajpendo.00256.2007.CrossRefGoogle Scholar
  52. 52.
    Hodgson KA, Govan BL, Walduck AK, Ketheesan N, Morris JL. Impaired early cytokine responses at the site of infection in a murine model of type 2 diabetes and melioidosis comorbidity. Infect Immun. 2013;81:470–7.  https://doi.org/10.1128/IAI.00930-12.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Hodgson KA, Morris JL, Feterl ML, Govan BL, Ketheesan N. Altered macrophage function is associated with severe Burkholderia pseudomallei infection in a murine model of type 2 diabetes. Microbes and infection / Institut Pasteur. 2011;13:1177–84.  https://doi.org/10.1016/j.micinf.2011.07.008.CrossRefGoogle Scholar
  54. 54.
    Brett PJ, DeShazer D, Woods DE. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect. 1997;118:137–48.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Ellison DW, Baker HJ, Mariappan M. Melioidosis in Malaysia. I. A method for isolation of Pseudomonas pseudomallei from soil and surface water. Am J Trop Med Hyg. 1969;18:694–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Gutierrez MG, Warawa JM. Attenuation of a select agent-excluded Burkholderia pseudomallei capsule mutant in hamsters. Acta Trop. 2016;157:68–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Miller WR, Pannell L, Cravitz L, Tanner WA, Rosebury T. Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. II. Virulence and infectivity for animals. J Bacteriol. 1948;55:127–35.PubMedCentralGoogle Scholar
  58. 58.
    Finkelstein RA, Atthasampunna P, Chulasamaya M. Pseudomonas (Burkholderia) pseudomallei in Thailand, 1964–1967: geographic distribution of the organism, attempts to identify cases of active infection, and presence of antibody in representative sera. Am J Trop Med Hyg. 2000;62:232–9.CrossRefPubMedGoogle Scholar
  59. 59.
    DeShazer D. Virulence of clinical and environmental isolates of Burkholderia oklahomensis and Burkholderia thailandensis in hamsters and mice. FEMS Microbiol Lett. 2007;277:64–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011;79:1512–25.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun. 2001;69:34–44.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun. 2006;74:5465–76.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Ulrich RL, DeShazer D, Brueggemann EE, Hines HB, Oyston PC, Jeddeloh JA. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol. 2004;53:1053–64.CrossRefPubMedGoogle Scholar
  64. 64.
    Warawa J, Woods DE. Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett. 2005;242:101–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Norris MH, Propst KL, Kang Y, Dow SW, Schweizer HP, Hoang TT. The Burkholderia pseudomallei Δasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect Immun. 2011;79:4010–8.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Propst KL, Mima T, Choi KH, Dow SW, Schweizer HP. A Burkholderia pseudomallei ∆purM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect Immun. 2010;78:3136–43.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    M V. Presence probable du bacille de Whitmore dans l’eau de mare au Tonkin. Bull Soc Pathol Exot. 1937;30:10–5.Google Scholar
  68. 68.
    McCormick JB, Weaver RE, Hayes PS, Boyce JM, Feldman RA. Wound infection by an indigenous Pseudomonas pseudomallei-like organism isolated from the soil: case report and epidemiologic study. J Infect Dis. 1977;135:103–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Chambon L. Isolation of Whitmore’s bacillus from external environment. Ann Inst Pasteur (Paris). 1955;89:229–35.Google Scholar
  70. 70.
    Manzeniuk IN, Galina EA, Dorokhin VV, Kalachev I, Borzenkov VN, Svetoch EA. Burkholderia mallei and Burkholderia pseudomallei. Study of immuno- and pathogenesis of glanders and melioidosis. Heterologous vaccines. Antibiot Khimioter. 1999;44:21–6.PubMedGoogle Scholar
  71. 71.
    DeShazer D, Brett PJ, Woods DE. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol. 1998;3:1081–100.CrossRefGoogle Scholar
  72. 72.
    Kasantikul T, Sommanustweechai A, Polsrila K, Kongkham W, Chaisongkram C, Sanannu S et al. Retrospective study on fatal melioidosis in captive zoo animals in Thailand. Transbound Emerg Dis 2016;63(5):e389–94.  https://doi.org/10.1111/tbed.12315.
  73. 73.
    Strauss JM, Ellison DW, Gan E, Jason S, Marcarelli JL, Rapmund G. Melioidosis in Malaysia. IV. Intensive ecological study of Carey Island, Selangor, for Pseudomonas pseudomallei. Med J Malaya. 1969;24:94–100.PubMedGoogle Scholar
  74. 74.
    Harries EJ, Lewis AA, Waring JWB, Dowling EJ. Melioidosis treated with sulphonamides and penicillin. Lancet. 1948;1:363–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Fatimah I, Ikede BO, Mutalib RA. Granulomatous orchitis and periorchitis caused by Pseudomonas pseudomallei in a goat. Vet Rec. 1984;114:67–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Laws L, Hall WTK. Melioidosis in animals in north Queensland. 1. Incidence and pathology, with special reference to central nervous system lesions. Queensland J Agric Sci. 1963;20:499–513.Google Scholar
  77. 77.
    Laws L, Hall WTK. Melioidosis in animals in North Queensland IV. Epidemiology. Aust Vet J. 1964;40:309–14.  https://doi.org/10.1111/j.1751-0813.1964.tb04524.x.CrossRefGoogle Scholar
  78. 78.
    Lewis FA, Olds RJ. Melioidosis in sheep and a goat in North Queensland. Aust Vet J. 1952;28:145–50.  https://doi.org/10.1111/j.1751-0813.1952.tb05152.x.CrossRefGoogle Scholar
  79. 79.
    Olds RJ, Lewis FA. Melioidosis in goats. Aust Vet J. 1954;30:253–61.  https://doi.org/10.1111/j.1751-0813.1954.tb05416.x.CrossRefGoogle Scholar
  80. 80.
    Omar AR. Pathology of melioidosis in pigs, goats and a horse. J Comp Pathol. 1963;73:359–72.CrossRefPubMedGoogle Scholar
  81. 81.
    Retnasabapathy A. Isolation of Pseudomonas pseudomallei from an aborted goat foetus. Vet Rec. 1966;79:166.CrossRefPubMedGoogle Scholar
  82. 82.
    Van der Lugt JJ, Henton MM. Melioidosis in a goat. J S Afr Vet Assoc. 1995;66:71–3.PubMedGoogle Scholar
  83. 83.
    Cottew GS. Melioidosis in sheep in Queens land; a description of the causal organism. Aust J Exp Biol Med Sci. 1950;28:677–83.CrossRefPubMedGoogle Scholar
  84. 84.
    Cottew GS, Sutherland AK, Meehan JF. Melioidosis in sheep in Queensland: description of an outbreak. Aust Vet J. 1952;28:113–23.  https://doi.org/10.1111/j.1751-0813.1952.tb05138.x.CrossRefGoogle Scholar
  85. 85.
    Ketterer PJ, Donald B, Rogers RJ. Bovine melioidosis in South-Eastern Queensland. Aust Vet J. 1975;51:395–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Ketterer PJ, Webster WR, Shield J, Arthur RJ, Blackall PJ, Thomas AD. Melioidosis in intensive piggeries in south eastern Queensland. Aust Vet J. 1986;63:146–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Thomas AD, Norton JH, Forbes-Faulkner JC, Woodland G. Melioidosis in an intensive piggery. Aust Vet J. 1981;57:144–5.CrossRefPubMedGoogle Scholar
  88. 88.
    Ladds PW, Thomas AD, Pott B. Melioidosis with acute meningoencephalomyelitis in a horse. Aust Vet J. 1981;57:36–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Stanton AT, Fletcher W, Symonds SL. Melioidosis in a horse. J Hyg (Lond). 1927;26:33–5.CrossRefGoogle Scholar
  90. 90.
    Brundage WG, Thuss CJ Jr, Walden DC. Four fatal cases of melioidosis in U. S. soldiers in Vietnam. Bacteriologic and pathologic characteristics. Am J Trop Med Hyg. 1968;17:183–91.CrossRefPubMedGoogle Scholar
  91. 91.
    Kaufmann AF, Alexander AD, Allen MA, Cronin RJ, Dillingham LA, Douglas JD, et al. Melioidosis in imported non-human primates. J Wildl Dis. 1970;6:211–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Vesselinova A, Najdenski H, Nikolova S, Kussovski V. Experimental melioidosis in hens. Zentralbl Veterinarmed B. 1996;43:371–8.PubMedGoogle Scholar
  93. 93.
    Stanton AT, Fletcher W. Melioidosis: studies from the Institute of Medical Research of Federated Malay States. London: John Bale & Sons and Danielson Ltd; 1932.Google Scholar
  94. 94.
    Nicolls L. Melioidosis, with special reference to the dissociation of Bacillus whitmori. Br J Exp Pathol. 1930;11:393–9.Google Scholar
  95. 95.
    Najdenski H, Kussovski V, Vesselinova A. Experimental Burkholderia pseudomallei infection of pigs. J Vet Med B Infect Dis Vet Public Health. 2004;51:225–30.  https://doi.org/10.1111/j.1439-0450.2004.00754.x.CrossRefPubMedGoogle Scholar
  96. 96.
    Thomas AD, Forbes-Faulkner JC, D’Arcy TL, Norton JH, Hoffmann D. Experimental infection of normal and immunosuppressed pigs with Pseudomonas pseudomallei. Aust Vet J. 1990;67:43–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Narita M, Loganathan P, Hussein A, Jamaluddin A, Joseph PG. Pathological changes in goats experimentally inoculated with Pseudomonas pseudomallei. Natl Inst Anim Health Q (Tokyo). 1982;22:170–9.Google Scholar
  98. 98.
    Thomas AD, Forbes-Faulkner JC, Norton JH, Trueman KF. Clinical and pathological observations on goats experimentally infected with Pseudomonas pseudomallei. Aust Vet J. 1988;65:43–6.CrossRefPubMedGoogle Scholar
  99. 99.
    Soffler C, Bosco-Lauth AM, Aboellail TA, Marolf AJ, Bowen RA. Development and characterization of a caprine aerosol infection model of melioidosis. PLoS One. 2012;7:e43207.  https://doi.org/10.1371/journal.pone.0043207.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Soffler C, Bosco-Lauth AM, Aboellail TA, Marolf AJ, Bowen RA. Pathogenesis of percutaneous infection of goats with Burkholderia pseudomallei: clinical, pathologic, and immunological responses in chronic melioidosis. Int J Exp Pathol. 2014;95:101–19.  https://doi.org/10.1111/iep.12068.PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Millan JM, Mayo M, Gal D, Janmaat A, Currie BJ. Clinical variation in melioidosis in pigs with clonal infection following possible environmental contamination from bore water. Vet J. 2007;174:200–2.  https://doi.org/10.1016/j.tvjl.2006.05.006.CrossRefPubMedGoogle Scholar
  102. 102.
    Tonpitak W, Sornklien C, Chawanit M, Pavasutthipaisit S, Wuthiekanun V, Hantrakun V, et al. Fatal melioidosis in goats in Bangkok. Thailand Am J Trop Med Hyg. 2014;91:287–90.  https://doi.org/10.4269/ajtmh.14-0115.CrossRefPubMedGoogle Scholar
  103. 103.
    Piggott JA, Hochholzer L. Human melioidosis. A histopathologic study of acute and chronic melioidosis. Arch Pathol. 1970;90:101–11.PubMedGoogle Scholar
  104. 104.
    Ileri SZ. The indirect haemagglutination test in the diagnosis of melioidosis in goats. Br Vet J. 1965;121:164–70.CrossRefPubMedGoogle Scholar
  105. 105.
    Thomas AD, Spinks GA, D’Arcy TL, Norton JH, Trueman KF. Evaluation of four serological tests for the diagnosis of caprine melioidosis. Aust Vet J. 1988;65:261–4.CrossRefPubMedGoogle Scholar
  106. 106.
    Greenawald KA, Nash G, Foley FD. Acute systemic melioidosis. Autopsy findings in four patients. Am J Clin Pathol. 1969;52:188–98.CrossRefPubMedGoogle Scholar
  107. 107.
    Warawa JM. Evaluation of surrogate animal models of melioidosis. Front Microbiol. 2010;1:141.  https://doi.org/10.3389/fmicb.2010.00141.PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Stanton AT, Fletcher W. Melioidosis and its relation to glanders. J Hyg (Lond). 1925;23:347–63.PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Nelson M, Dean RE, Salguero FJ, Taylor C, Pearce PC, Simpson AJ, et al. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus). Int J Exp Pathol. 2011;92:428–35.  https://doi.org/10.1111/j.1365-2613.2011.00791.x.PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Yeager JJ, Facemire P, Dabisch PA, Robinson CG, Nyakiti D, Beck K, et al. Natural history of inhalation melioidosis in rhesus macaques (Macaca mulatta) and African green monkeys (Chlorocebus aethiops). Infect Immun. 2012;80:3332–40.  https://doi.org/10.1128/IAI.00675-12.PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    • Nelson M, Nunez A, Ngugi SA, Sinclair A, Atkins TP. Characterization of lesion formation in marmosets following inhalational challenge with different strains of Burkholderia pseudomallei. Int j exp pathol. 2015;96:414–26.  https://doi.org/10.1111/iep.12161. This paper provides a nice summary of marmoset work to date CrossRefPubMedGoogle Scholar
  112. 112.
    Nelson M, Salguero FJ, Dean RE, Ngugi SA, Smither SJ, Atkins TP, et al. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus). Int J Exp Pathol. 2014;95:378–91.  https://doi.org/10.1111/iep.12105.PubMedCentralCrossRefPubMedGoogle Scholar
  113. 113.
    Yingst SL, Facemire P, Chuvala L, Norwood D, Wolcott M, Alves DA. Pathological findings and diagnostic implications of a rhesus macaque (Macaca mulatta) model of aerosol-exposure melioidosis (Burkholderia pseudomallei). J Med Microbiol. 2014;63:118–28.  https://doi.org/10.1099/jmm.0.059063-0.CrossRefPubMedGoogle Scholar
  114. 114.
    Cheng AC, Jacups SP, Gal D, Mayo M, Currie BJ. Extreme weather events and environmental contamination are associated with case-clusters of melioidosis in the Northern Territory of Australia. Int J Epidemiol. 2006;35:323–9.  https://doi.org/10.1093/ije/dyi271.CrossRefPubMedGoogle Scholar
  115. 115.
    Chou DW, Chung KM, Chen CH, Cheung BM. Bacteremic melioidosis in southern Taiwan: clinical characteristics and outcome. J Formos Med Assoc. 2007;106:1013–22.  https://doi.org/10.1016/S0929-6646(08)60077-7.CrossRefPubMedGoogle Scholar
  116. 116.
    Rammaert B, Beaute J, Borand L, Hem S, Buchy P, Goyet S, et al. Pulmonary melioidosis in Cambodia: a prospective study. BMC Infect Dis. 2011;11:126.  https://doi.org/10.1186/1471-2334-11-126.PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Phuong DM, Trung TT, Breitbach K, Tuan NQ, Nubel U, Flunker G, et al. Clinical and microbiological features of melioidosis in northern Vietnam. Trans R Soc Trop Med Hyg. 2008;102(Suppl 1):S30–6.  https://doi.org/10.1016/S0035-9203(08)70009-9.CrossRefPubMedGoogle Scholar
  118. 118.
    Suputtamongkol Y, Hall AJ, Dance DA, Chaowagul W, Rajchanuvong A, Smith MD, et al. The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int J Epidemiol. 1994;23:1082–90.CrossRefPubMedGoogle Scholar
  119. 119.
    Suputtamongkol Y, Chaowagul W, Chetchotisakd P, Lertpatanasuwun N, Intaranongpai S, Ruchutrakool T, et al. Risk factors for melioidosis and bacteremic melioidosis. Clin Infect Dis. 1999;29:408–13.  https://doi.org/10.1086/520223.CrossRefPubMedGoogle Scholar
  120. 120.
    Gibney KB, Cheng AC, Currie BJ. Cutaneous melioidosis in the tropical top end of Australia: a prospective study and review of the literature. Clin infect dis : off pub Infect Dis Soc Am. 2008;47:603–9.  https://doi.org/10.1086/590931.CrossRefGoogle Scholar
  121. 121.
    Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. 2002;297:623–6.  https://doi.org/10.1126/science.1073759.CrossRefPubMedGoogle Scholar
  122. 122.
    Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, et al. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet. 2010;6:e1000892.  https://doi.org/10.1371/journal.pgen.1000892.PubMedCentralCrossRefPubMedGoogle Scholar
  123. 123.
    O’Quinn AL, Wiegand EM, Jeddeloh JA. Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 2001;3:381–93.CrossRefPubMedGoogle Scholar
  124. 124.
    Wong RR, Kong C, Lee SH, Nathan S. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor. Sci Rep. 2016;6:27475.  https://doi.org/10.1038/srep27475.PubMedCentralCrossRefPubMedGoogle Scholar
  125. 125.
    Lee SH, Wong RR, Chin CY, Lim TY, Eng SA, Kong C, et al. Burkholderia pseudomallei suppresses Caenorhabditis elegans immunity by specific degradation of a GATA transcription factor. Proc Natl Acad Sci U S A. 2013;110:15067–72.  https://doi.org/10.1073/pnas.1311725110.PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Biggins JB, Ternei MA, Brady SF. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc. 2012;134:13192–5.  https://doi.org/10.1021/ja3052156.PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Eng SA, Nathan S. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Front Microbiol. 2015;6:290.  https://doi.org/10.3389/fmicb.2015.00290.PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    Lim MP, Firdaus-Raih M, Nathan S. Nematode peptides with host-directed anti-inflammatory activity rescue Caenorhabditis elegans from a Burkholderia pseudomallei infection. Front Microbiol. 2016;7:1436.  https://doi.org/10.3389/fmicb.2016.01436.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Vilmos P, Kurucz E. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett. 1998;62:59–66.CrossRefPubMedGoogle Scholar
  130. 130.
    Fisher NA, Ribot WJ, Applefeld W, DeShazer D. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei B mallei and B thailandensis. BMC microbiol. 2012;12:117.  https://doi.org/10.1186/1471-2180-12-117.PubMedCentralCrossRefPubMedGoogle Scholar
  131. 131.
    Chua J, Senft JL, Lockett SJ, Brett PJ, Burtnick MN, DeShazer D, et al. pH alkalinization by chloroquine suppresses pathogenic Burkholderia type 6 secretion system 1 and multinucleated giant cells. Infect Immun. 2017;85:e00586–16.  https://doi.org/10.1128/IAI.00586-16.CrossRefPubMedGoogle Scholar
  132. 132.
    Schell MA, Lipscomb L, DeShazer D. Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol. 2008;190:2306–13.  https://doi.org/10.1128/JB.01735-07.PubMedCentralCrossRefPubMedGoogle Scholar
  133. 133.
    Wand ME, Muller CM, Titball RW, Michell SL. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011;11:11.  https://doi.org/10.1186/1471-2180-11-11.PubMedCentralCrossRefPubMedGoogle Scholar
  134. 134.
    Hasselbring BM, Patel MK, Schell MA. Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun. 2011;79:2079–88.  https://doi.org/10.1128/IAI.01233-10.PubMedCentralCrossRefPubMedGoogle Scholar
  135. 135.
    Petersen H, Nieves W, Russell-Lodrigue K, Roy CJ, Morici LA. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol. 2014;8:38–42.  https://doi.org/10.1016/j.provac.2014.07.007.PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Laws TR, Nelson M, Bonnafous C, Sicard H, Taylor C, Salguero FJ, et al. In vivo manipulation of gamma9+ T cells in the common marmoset (Callithrix Jacchus) with phosphoantigen and effect on the progression of respiratory melioidosis. PLoS One. 2013;8:e74789.  https://doi.org/10.1371/journal.pone.0074789.PubMedCentralCrossRefPubMedGoogle Scholar
  137. 137.
    Biggins JB, Kang HS, Ternei MA, DeShazer D, Brady SF. The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc. 2014;136:9484–90.  https://doi.org/10.1021/ja504617n.PubMedCentralCrossRefPubMedGoogle Scholar
  138. 138.
    Custódio R, McLean CJ, Scott AE, Lowther J, Kennedy A, Clarke DJ, et al. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei. Mol Microbiol. 2016;102:1004–19.  https://doi.org/10.1111/mmi.13531.CrossRefPubMedGoogle Scholar
  139. 139.
    Gutierrez MG, Yoder-Himes DR, Warawa JM. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis. Front Cell Infect Microbiol. 2015;5:78.  https://doi.org/10.3389/fcimb.2015.00078.PubMedCentralCrossRefPubMedGoogle Scholar
  140. 140.
    Lazar Adler NR, Allwood EM, Lucas DD, Harrison P, Watts S, Dimitropoulos A, et al. Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics. 2016;17:331.  https://doi.org/10.1186/s12864-016-2668-4.PubMedCentralCrossRefPubMedGoogle Scholar
  141. 141.
    Lazar Adler NR, Stevens MP, Dean RE, Saint RJ, Pankhania D, Prior JL, et al. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance. PLoS One. 2015;10:e0121271.  https://doi.org/10.1371/journal.pone.CrossRefPubMedGoogle Scholar
  142. 142.
    Moule MG, Spink N, Willcocks S, Lim J, Guerra-Assunção JA, Cia F, et al. Characterization of new virulence factors involved in the intracellular growth and survival of Burkholderia pseudomallei. Infect Immun. 2016;84:701–10.  https://doi.org/10.1128/iai.01102-15.PubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sahl JW, Allender CJ, Colman RE, Califf KJ, Schupp JM, Currie BJ, et al. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence. PLoS One. 2015;10:e0121052.  https://doi.org/10.1371/journal.pone.PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    Shea AA, Bernhards RC, Cote CK, Chase CJ, Koehler JW, Klimko CP, et al. Two stable variants of Burkholderia pseudomallei strain MSHR5848 express broadly divergent in vitro phenotypes associated with their virulence differences. PLoS One. 2017;12:e0171363.  https://doi.org/10.1371/journal.pone.PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Treerat P, Alwis P, D’Cruze T, Cullinane M, Vadivelu J, Devenish RJ, et al. The Burkholderia pseudomallei proteins BapA and BapC are secreted TTSS3 effectors and BapB levels modulate expression of BopE. PLoS One. 2015;10:e0143916.  https://doi.org/10.1371/journal.pone.PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    • Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, Ireland PM, Pumirat P, Korbsrisate S, et al. Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence. 2017;8:30–40.  https://doi.org/10.1080/21505594.2016.1199316. In vitro, insect, and mammalian models are all employed to evaluate the role of trehalase in stress response and virulence CrossRefPubMedGoogle Scholar
  147. 147.
    Welkos SL, Klimko CP, Kern SJ, Bearss JJ, Bozue JA, Bernhards RC, et al. Characterization of Burkholderia pseudomallei strains using a murine intraperitoneal infection model and in vitro macrophage assays. PLoS One. 2015;10:e0124667.  https://doi.org/10.1371/journal.pone.PubMedCentralCrossRefPubMedGoogle Scholar
  148. 148.
    Sarkar-Tyson M, Titball RW. Progress toward development of vaccines against melioidosis: a review. Clin Ther. 2010;32:1437–45.  https://doi.org/10.1016/j.clinthera.2010.07.020.CrossRefPubMedGoogle Scholar
  149. 149.
    Peacock SJ, Limmathurotsakul D, Lubell Y, Koh GC, White LJ, Day NP, et al. Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis. 2012;6:e1488.  https://doi.org/10.1371/journal.pntd.0001488.PubMedCentralCrossRefPubMedGoogle Scholar
  150. 150.
    •• Limmathurotsakul D, Funnell SG, Torres AG, Morici LA, Brett PJ, Dunachie S et al. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg Infect Dis. 2015:21(6)  https://doi.org/10.3201/eid2106.141480. This consensus paper includes an anlaysis of research gaps and recommendations for animal modeling and accelerated vaccine development.
  151. 151.
    Muruato LA, Torres AG. Melioidosis: where do we stand in the development of an effective vaccine? Future Microbiol. 2016;11:477–80.  https://doi.org/10.2217/fmb-2015-0018.CrossRefPubMedGoogle Scholar
  152. 152.
    Silva EB, Dow SW. Development of Burkholderia mallei and pseudomallei vaccines. Front Cell Infect Microbiol. 2013;3:10.  https://doi.org/10.3389/fcimb.2013.00010.PubMedCentralCrossRefPubMedGoogle Scholar
  153. 153.
    Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, et al. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol. 2013;3:5.  https://doi.org/10.3389/fcimb.2013.00005.PubMedCentralCrossRefPubMedGoogle Scholar
  154. 154.
    Patel N, Conejero L, De Reynal M, Easton A, Bancroft GJ, Titball RW. Development of vaccines against Burkholderia pseudomallei. Front Microbiol. 2011;2:198.  https://doi.org/10.3389/fmicb.2011.00198.PubMedCentralCrossRefPubMedGoogle Scholar
  155. 155.
    Dance D. Treatment and prophylaxis of melioidosis. Int J Antimicrob Agents. 2014;43:310–8.  https://doi.org/10.1016/j.ijantimicag.2014.01.005.PubMedCentralCrossRefPubMedGoogle Scholar
  156. 156.
    Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti-Infect Ther. 2010;8:325–38.  https://doi.org/10.1586/eri.10.4.PubMedCentralCrossRefPubMedGoogle Scholar
  157. 157.
    Schweizer HP. When it comes to drug discovery not all Gram-negative bacterial biodefence pathogens are created equal: Burkholderia pseudomallei is different. Microb Biotechnol. 2012;5:581–3.  https://doi.org/10.1111/j.1751-7915.2012.00334.x.PubMedCentralCrossRefPubMedGoogle Scholar
  158. 158.
    Sarkar-Tyson M, Atkins HS. Antimicrobials for bacterial bioterrorism agents. Future Microbiol. 2011;6:667–76.  https://doi.org/10.2217/fmb.11.50.CrossRefPubMedGoogle Scholar
  159. 159.
    Feterl M, Govan B, Engler C, Norton R, Ketheesan N. Activity of tigecycline in the treatment of acute Burkholderia pseudomallei infection in a murine model. Int J Antimicrob Agents. 2006;28:460–4.  https://doi.org/10.1016/j.ijantimicag.2006.07.022.CrossRefPubMedGoogle Scholar
  160. 160.
    Harris P, Engler C, Norton R. Comparative in vitro susceptibility of Burkholderia pseudomallei to doripenem, ertapenem, tigecycline and moxifloxacin. Int J Antimicrob Agents. 2011;37:547–9.  https://doi.org/10.1016/j.ijantimicag.2011.02.001.CrossRefPubMedGoogle Scholar
  161. 161.
    Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, et al. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei infections. PLoS Pathog. 2012;8:e1002587.  https://doi.org/10.1371/journal.ppat.1002587.PubMedCentralCrossRefPubMedGoogle Scholar
  162. 162.
    Jones SM, Ellis JF, Russell P, Griffin KF, Oyston PC. Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins. J Med Microbiol. 2002;51:1055–62.  https://doi.org/10.1099/0022-1317-51-12-1055.CrossRefPubMedGoogle Scholar
  163. 163.
    Powell K, Ulett G, Hirst R, Norton R. G-CSF immunotherapy for treatment of acute disseminated murine melioidosis. FEMS Microbiol Lett. 2003;224:315–8.CrossRefPubMedGoogle Scholar
  164. 164.
    Cummings JE, Beaupre AJ, Knudson SE, Liu N, Yu W, Neckles C, et al. Substituted diphenyl ethers as a novel chemotherapeutic platform against Burkholderia pseudomallei. Antimicrob Agents Chemother. 2014;58:1646–51.  https://doi.org/10.1128/AAC.02296-13.PubMedCentralCrossRefPubMedGoogle Scholar
  165. 165.
    Guo P, Zhang J, Tsai S, Li B, Lo SC. Developing peptide mimotopes of capsular polysaccharides and lipopolysaccharides protective antigens of pathogenic Burkholderia bacteria. Monoclon Antib Immunodiagn Immunother. 2016;35:125–34.  https://doi.org/10.1089/mab.2015.0073.PubMedGoogle Scholar
  166. 166.
    Zhang S, Feng SH, Li B, Kim HY, Rodriguez J, Tsai S, et al. In vitro and in vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei. Clin vaccine immunol : CVI. 2011;18:825–34.  https://doi.org/10.1128/CVI.00533-10.PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, et al. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One. 2012;7:e35386.  https://doi.org/10.1371/journal.pone.0035386.PubMedCentralCrossRefPubMedGoogle Scholar
  168. 168.
    Lakshmanan U, Yap A, Fulwood J, Yichun L, Hoon SS, Lim J, et al. Establishment of a novel whole animal HTS technology platform for melioidosis drug discovery. Comb Chem High Throughput Screen. 2014;17:790–803.CrossRefPubMedGoogle Scholar
  169. 169.
    Ruiz SI, El-Gendy N, Bowen LE, Berkland C, Bailey MM. Formulation and characterization of nanocluster ceftazidime for the treatment of acute pulmonary melioidosis. J Pharm Sci. 2016;105:3399–408.  https://doi.org/10.1016/j.xphs.2016.07.029.CrossRefPubMedGoogle Scholar
  170. 170.
    Asakrah S, Nieves W, Mahdi Z, Agard M, Zea AH, Roy CJ, et al. Post-exposure therapeutic efficacy of COX-2 inhibition against Burkholderia pseudomallei. PLoS Negl Trop Dis. 2013;7:e2212.  https://doi.org/10.1371/journal.pntd.0002212.PubMedCentralCrossRefPubMedGoogle Scholar
  171. 171.
    Wilson WJ, Afzali MF, Cummings JE, Legare ME, Tjalkens RB, Allen CP, et al. Immune modulation as an effective adjunct post-exposure therapeutic for B. pseudomallei. PLoS Negl Trop Dis. 2016;10:e0005065.  https://doi.org/10.1371/journal.pntd.0005065.PubMedCentralCrossRefPubMedGoogle Scholar
  172. 172.
    Charoensup J, Sermswan RW, Paeyao A, Promakhejohn S, Punasee S, Chularari C, et al. High HMGB1 level is associated with poor outcome of septicemic melioidosis. Int J Infect Dis. 2014;28:111–6.  https://doi.org/10.1016/j.ijid.2014.07.025.CrossRefPubMedGoogle Scholar
  173. 173.
    Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N. Glycogen synthase kinase-3beta inhibition improved survivability of mice infected with Burkholderia pseudomallei. Trop Biomed. 2012;29:551–67.PubMedGoogle Scholar
  174. 174.
    Laws TR, Clark GC, D’Elia RV. Immune profiling of the progression of a BALB/c mouse aerosol infection by Burkholderia pseudomallei and the therapeutic implications of targeting HMGB1. Int J Infect Dis. 2015;40:1–8.  https://doi.org/10.1016/j.ijid.2015.09.003.CrossRefPubMedGoogle Scholar
  175. 175.
    Sivalingam SP, Sim SH, Jasper LC, Wang D, Liu Y, Ooi EE. Pre- and post-exposure prophylaxis of experimental Burkholderia pseudomallei infection with doxycycline, amoxicillin/clavulanic acid and co-trimoxazole. J Antimicrob Chemother. 2008;61:674–8.  https://doi.org/10.1093/jac/dkm527.CrossRefPubMedGoogle Scholar
  176. 176.
    Burtnick MN, Heiss C, Roberts RA, Schweizer HP, Azadi P, Brett PJ. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front Cell Infect Microbiol. 2012;2:108.  https://doi.org/10.3389/fcimb.2012.00108.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Scott AE, Ngugi SA, Laws TR, Corser D, Lonsdale CL, D’Elia RV, et al. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J Immunol Res. 2014;2014:392170.  https://doi.org/10.1155/2014/392170.PubMedCentralCrossRefPubMedGoogle Scholar
  178. 178.
    Scott AE, Christ WJ, George AJ, Stokes MG, Lohman GJ, Guo Y, et al. Protection against experimental melioidosis with a synthetic manno-heptopyranose hexasaccharide glycoconjugate. Bioconjug Chem. 2016;27:1435–46.  https://doi.org/10.1021/acs.bioconjchem.5b00525.PubMedCentralCrossRefPubMedGoogle Scholar
  179. 179.
    Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, et al. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm. 2015;495:849–61.  https://doi.org/10.1016/j.ijpharm.2015.09.059.CrossRefPubMedGoogle Scholar
  180. 180.
    Garcia-Quintanilla F, Iwashkiw JA, Price NL, Stratilo C, Feldman MF. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front Microbiol. 2014;5:381.  https://doi.org/10.3389/fmicb.2014.00381.PubMedCentralCrossRefPubMedGoogle Scholar
  181. 181.
    Puangpetch A, Anderson R, Huang YY, Saengsot R, Sermswan RW, Wongratanacheewin S. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine. 2014;32:5983–8.  https://doi.org/10.1016/j.vaccine.2014.08.035.CrossRefPubMedGoogle Scholar
  182. 182.
    Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J, Aucoin DP, et al. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine. 2011;29:8381–9.  https://doi.org/10.1016/j.vaccine.2011.08.058.PubMedCentralCrossRefPubMedGoogle Scholar
  183. 183.
    Nieves W, Petersen H, Judy BM, Blumentritt CA, Russell-Lodrigue K, Roy CJ, et al. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin Vaccine Immunol. 2014;21:747–54.  https://doi.org/10.1128/CVI.00119-14.PubMedCentralCrossRefPubMedGoogle Scholar
  184. 184.
    Norris MH, Propst KL, Kang Y, Dow SW, Schweizer HP, Hoang TT. The Burkholderia pseudomallei Δasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect Immun. 2011;79:4010–8.  https://doi.org/10.1128/IAI.05044-11.PubMedCentralCrossRefPubMedGoogle Scholar
  185. 185.
    Scott AE, Laws TR, D’Elia RV, Stokes MG, Nandi T, Williamson ED, et al. Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a manno-heptose capsule. Clin Vaccine Immunol. 2013;20:1041–7.  https://doi.org/10.1128/CVI.00113-13.PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Moustafa DA, Scarff JM, Garcia PP, Cassidy SK, DiGiandomenico A, Waag DM, et al. Recombinant Salmonella expressing Burkholderia mallei LPS O antigen provides protection in a murine model of melioidosis and glanders. PLoS One. 2015;10:e0132032.  https://doi.org/10.1371/journal.pone.0132032.PubMedCentralCrossRefPubMedGoogle Scholar
  187. 187.
    Muller CM, Conejero L, Spink N, Wand ME, Bancroft GJ, Titball RW. Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect Immun. 2012;80:3247–55.  https://doi.org/10.1128/IAI.00178-12.PubMedCentralCrossRefPubMedGoogle Scholar
  188. 188.
    Srilunchang T, Proungvitaya T, Wongratanacheewin S, Strugnell R, Homchampa P. Construction and characterization of an unmarked aroC deletion mutant of Burkholderia pseudomallei strain A2. Southeast Asian J Trop Med Public Health. 2009;40:123–30.PubMedGoogle Scholar
  189. 189.
    Atkins T, Prior RG, Mack K, Russell P, Nelson M, Oyston PC, et al. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect Immun. 2002;70:5290–4.PubMedCentralCrossRefPubMedGoogle Scholar
  190. 190.
    Amemiya K, Dankmeyer JL, Fetterer DP, Worsham PL, Welkos SL, Cote CK. Comparison of the early host immune response to two widely diverse virulent strains of Burkholderia pseudomallei that cause acute or chronic infections in BALB/c mice. Microb Pathog. 2015;86:53–63.  https://doi.org/10.1016/j.micpath.2015.07.004.CrossRefPubMedGoogle Scholar
  191. 191.
    Wiersinga WJ, Wieland CW, Dessing MC, Chantratita N, Cheng AC, Limmathurotsakul D, et al. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med. 2007;4:e248.  https://doi.org/10.1371/journal.pmed.0040248.PubMedCentralCrossRefPubMedGoogle Scholar
  192. 192.
    West TE, Ernst RK, Jansson-Hutson MJ, Skerrett SJ. Activation of Toll-like receptors by Burkholderia pseudomallei. BMC Immunol. 2008;9:46.  https://doi.org/10.1186/1471-2172-9-46.PubMedCentralCrossRefPubMedGoogle Scholar
  193. 193.
    Chantratita N, Tandhavanant S, Myers ND, Seal S, Arayawichanont A, Kliangsa-Ad A, et al. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide. PLoS One. 2013;8:e81617.  https://doi.org/10.1371/journal.pone.0081617.PubMedCentralCrossRefPubMedGoogle Scholar
  194. 194.
    Korneev KV, Arbatsky NP, Molinaro A, Palmigiano A, Shaikhutdinova RZ, Shneider MM, et al. Structural relationship of the lipid a acyl groups to activation of murine toll-like receptor 4 by lipopolysaccharides from pathogenic strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Front Immunol. 2015;6:595.  https://doi.org/10.3389/fimmu.2015.00595.PubMedCentralCrossRefPubMedGoogle Scholar
  195. 195.
    Weehuizen TA, Prior JL, van der Vaart TW, Ngugi SA, Nepogodiev SA, Field RA, et al. Differential toll-like receptor-Signalling of Burkholderia pseudomallei lipopolysaccharide in murine and human models. PLoS One. 2015;10:e0145397.  https://doi.org/10.1371/journal.pone.0145397.PubMedCentralCrossRefPubMedGoogle Scholar
  196. 196.
    Norris MH, Schweizer HP, Tuanyok A. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLoS Negl Trop Dis. 2017;11:e0005571.  https://doi.org/10.1371/journal.pntd.0005571.PubMedCentralCrossRefPubMedGoogle Scholar
  197. 197.
    Hii CS, Sun GW, Goh JW, Lu J, Stevens MP, Gan YH. Interleukin-8 induction by Burkholderia pseudomallei can occur without Toll-like receptor signaling but requires a functional type III secretion system. J Infect Dis. 2008;197:1537–47.  https://doi.org/10.1086/587905.CrossRefPubMedGoogle Scholar
  198. 198.
    Brett PJ, Burtnick MN, Snyder DS, Shannon JG, Azadi P, Gherardini FC. Burkholderia mallei expresses a unique lipopolysaccharide mixture that is a potent activator of human Toll-like receptor 4 complexes. Mol Microbiol. 2007;63:379–90.  https://doi.org/10.1111/j.1365-2958.2006.05519.x.PubMedCentralCrossRefPubMedGoogle Scholar
  199. 199.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.  https://doi.org/10.1038/nature10510.CrossRefPubMedGoogle Scholar
  200. 200.
    Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350:404–9.  https://doi.org/10.1126/science.aac5789.PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    West TE, Myers ND, Chantratita N, Chierakul W, Limmathurotsakul D, Wuthiekanun V, et al. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl Trop Dis. 2014;8:e3178.  https://doi.org/10.1371/journal.pntd.0003178.PubMedCentralCrossRefPubMedGoogle Scholar
  202. 202.
    Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog. 2011;7:e1002452.  https://doi.org/10.1371/journal.ppat.1002452.PubMedCentralCrossRefPubMedGoogle Scholar
  203. 203.
    Easton A, Haque A, Chu K, Lukaszewski R, Bancroft GJ. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J Infect Dis. 2007;195:99–107.  https://doi.org/10.1086/509810.CrossRefPubMedGoogle Scholar
  204. 204.
    Chanchamroen S, Kewcharoenwong C, Susaengrat W, Ato M, Lertmemongkolchai G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun. 2009;77:456–63.  https://doi.org/10.1128/iai.00503-08.CrossRefPubMedGoogle Scholar
  205. 205.
    Propst KL, Mima T, Choi KH, Dow SW, Schweizer HP. A Burkholderia pseudomallei deltapurM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect Immun. 2010;78:3136–43.  https://doi.org/10.1128/IAI.01313-09.PubMedCentralCrossRefPubMedGoogle Scholar
  206. 206.
    Gutierrez MG, Warawa JM. Attenuation of a select agent-excluded Burkholderia pseudomallei capsule mutant in hamsters. Acta Trop. 2016;157:68–72.  https://doi.org/10.1016/j.actatropica.2015.12.006.CrossRefPubMedGoogle Scholar
  207. 207.
    Atkins T, Prior R, Mack K, Russell P, Nelson M, Prior J, et al. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol. 2002;51:539–47.  https://doi.org/10.1099/0022-1317-51-7-539.CrossRefPubMedGoogle Scholar
  208. 208.
    Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. Role for the Burkholderia pseudomallei capsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis. Infect Immun. 2009;77:5252–61.  https://doi.org/10.1128/IAI.00824-09.PubMedCentralCrossRefPubMedGoogle Scholar
  209. 209.
    Barnes KB, Steward J, Thwaite JE, Lever MS, Davies CH, Armstrong SJ, et al. Trimethoprim/sulfamethoxazole (co-trimoxazole) prophylaxis is effective against acute murine inhalational melioidosis and glanders. Int J Antimicrob Agents. 2013;41:552–7.  https://doi.org/10.1016/j.ijantimicag.2013.02.007.CrossRefPubMedGoogle Scholar
  210. 210.
    Gelhaus HC, Anderson MS, Fisher DA, Flavin MT, Xu ZQ, Sanford DC. Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis. Sci Rep. 2013;3:1146.  https://doi.org/10.1038/srep01146.PubMedCentralCrossRefPubMedGoogle Scholar
  211. 211.
    Ulett GC, Hirst R, Bowden B, Powell K, Norton R. A comparison of antibiotic regimens in the treatment of acute melioidosis in a mouse model. J Antimicrob Chemother. 2003;51:77–81.CrossRefPubMedGoogle Scholar
  212. 212.
    Haussler S, Rohde M, Steinmetz I. Highly resistant Burkholderia pseudomallei small colony variants isolated in vitro and in experimental melioidosis. Med Microbiol Immunol. 1999;188:91–7.CrossRefPubMedGoogle Scholar
  213. 213.
    Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004;230:13–8.CrossRefPubMedGoogle Scholar
  214. 214.
    Nierman WC, Yu Y, Losada L. The in vitro antibiotic tolerant persister population in Burkholderia pseudomallei is altered by environmental factors. Front Microbiol. 2015;6:1338.  https://doi.org/10.3389/fmicb.2015.01338.PubMedCentralCrossRefPubMedGoogle Scholar
  215. 215.
    • Cummings JE, Slayden RA. Transient in vivo resistance mechanisms of Burkholderia pseudomallei to ceftazidime and molecular markers for monitoring treatment response. PLoS Negl Trop Dis. 2017;11:e0005209.  https://doi.org/10.1371/journal.pntd.0005209. In this recent article, the authors characterized transcriptional responses of B. pseudomallei in mice (specific to ceftazidime exposure) to identify markers of treatment efficacy PubMedCentralCrossRefPubMedGoogle Scholar
  216. 216.
    Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun. 2006;74:5465–76.  https://doi.org/10.1128/IAI.00737-06.PubMedCentralCrossRefPubMedGoogle Scholar
  217. 217.
    Moule M, Spink N, Willcocks S, Lim J, Guerra-Assuncao J, Wren BW. Characterization of new virulence factors involved in the intracellular growth and survival of Burkholderia pseudomallei. Infect Immun. 2016;84:701–10.PubMedCentralCrossRefGoogle Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Kei Amemiya
    • 1
  • Joel A. Bozue
    • 1
  • Christopher K. Cote
    • 1
  • David Deshazer
    • 1
  • Carl Soffler
    • 1
  • Susan L. Welkos
    • 1
  • Patricia L. Worsham
    • 1
    Email author
  1. 1.Bacteriology DivisionU.S. Army Medical Research Institute of Infectious Diseases (USAMRIID)FrederickUSA

Personalised recommendations