Advertisement

Current Behavioral Neuroscience Reports

, Volume 5, Issue 4, pp 249–262 | Cite as

Review of Neurobiological Influences on Externalizing and Internalizing Pathways to Alcohol Use Disorder

  • Jillian E. Hardee
  • Lora M. Cope
  • Meghan E. Martz
  • Mary M. Heitzeg
Addictions (M Potenza and M Brand, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Addictions

Abstract

Purpose of Review

Two developmental courses through which alcohol use disorder (AUD) may emerge include externalizing and internalizing pathways. We review recent neuroimaging studies of potential neural risk factors for AUD and link findings to potential behavioral risk factors for AUD.

Recent Findings

There is evidence that early emerging weakness in prefrontal functioning and later-emerging differences in reward system functioning contribute to an externalizing risk pathway. Stress may be an important contributor in the internalizing pathway through a blunting of reward-related activation, which may act alone or in combination with heightened emotion-related reactivity.

Summary

This review highlights areas for future work, including investigation of the relative balance between prefrontal and subcortical circuitry, attention to stages of AUD, and consideration of environmental factors such as stress and sleep. Particularly important is longitudinal work to understand the temporal ordering of associations among brain maturation, behavioral risk, and alcohol use.

Keywords

Adolescence Stress Sleep Emotion Reward Inhibitory control 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Miech RA, Johnston LD, O'Malley PM, Bachman JG, Schulenberg JE, Patrick ME. Monitoring the future national survey results on drug use, 1975–2017: volume I, secondary school students. Ann Arbor: Institute for Social Research, The University of Michigan 2018.Google Scholar
  2. 2.
    Schulenberg JE, Johnston LD, O'Malley PM, Bachman JG, Miech RA, Patrick ME. Monitoring the future national survey results on drug use, 1975–2017: volume II, college students and adults ages 19–55. Ann Arbor: Institute for Social Research, The University of Michigan, 2018.Google Scholar
  3. 3.
    2016 National Survey on drug use and health: detailed tables. Rockville MD: Substance Abuse and Mental Health Services Administration: Center for Behavioral Health Statistics and Quality 2017.Google Scholar
  4. 4.
    Casey BJ. Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annu Rev Psychol. 2015;66:295–319.  https://doi.org/10.1146/annurev-psych-010814-015156.CrossRefPubMedGoogle Scholar
  5. 5.
    Shulman EP, Smith AR, Silva K, Icenogle G, Duell N, Chein J, et al. The dual systems model: review, reappraisal, and reaffirmation. Dev Cogn Neurosci. 2016;17:103–17.  https://doi.org/10.1016/j.dcn.2015.12.010.CrossRefPubMedGoogle Scholar
  6. 6.
    Ernst M. The triadic model perspective for the study of adolescent motivated behavior. Brain Cogn. 2014;89:104–11.  https://doi.org/10.1016/j.bandc.2014.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hussong AM, Rothenberg WA, Smith RK, Haroon M. Implications of heterogeneity in alcohol use disorders for understanding developmental pathways and prevention programming. In: Fitzgerald HE, Puttler LI, editors. Alcohol use disorders: a developmental science approach to etiology. New York: Oxford University Press; 2018. p. 30–8.Google Scholar
  8. 8.
    Zucker RA, Heitzeg MM, Nigg JT. Parsing the undercontrol/disinhibition pathway to substance use disorders: a multilevel developmental problem. Child Dev Perspect. 2011;5(4):248–55.  https://doi.org/10.1111/j.1750-8606.2011.00172.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nigg JT. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull. 2000;126(2):220–46.CrossRefGoogle Scholar
  10. 10.
    Heitzeg MM, Nigg JT, Hardee JE, Soules M, Steinberg D, Zubieta JK, et al. Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug Alcohol Depend. 2014;141:51–7.  https://doi.org/10.1016/j.drugalcdep.2014.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mahmood OM, Goldenberg D, Thayer R, Migliorini R, Simmons AN, Tapert SF. Adolescents’ fMRI activation to a response inhibition task predicts future substance use. Addict Behav. 2013;38(1):1435–41.  https://doi.org/10.1016/j.addbeh.2012.07.012.CrossRefPubMedGoogle Scholar
  12. 12.
    Wetherill RR, Squeglia LM, Yang TT, Tapert SF. A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking. Psychopharmacology. 2013;230(4):663–71.  https://doi.org/10.1007/s00213-013-3198-2.CrossRefPubMedGoogle Scholar
  13. 13.
    Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature. 2015;512:185–9.  https://doi.org/10.1038/nature13402.Neuropsychosocial.CrossRefGoogle Scholar
  14. 14.
    • Heitzeg MM, Villafuerte S, Weiland BJ, Enoch MA, Burmeister M, Zubieta JK, et al. Effect of GABRA2 genotype on development of incentive-motivation circuitry in a sample enriched for alcoholism risk. Neuropsychopharmacology. 2014;39(13):3077–86.  https://doi.org/10.1038/npp.2014.161 This is the first study to demonstrate that risk-related reward activation may be developmentally modulated. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stice E, Yokum S. Brain reward region responsivity of adolescents with and without parental substance use disorders. Psychol Addict Behav. 2014;28(3):805–15.  https://doi.org/10.1037/a0034460.CrossRefPubMedGoogle Scholar
  16. 16.
    • Waller R, Murray L, Shaw DS, Forbes EE, Hyde LW. Accelerated alcohol use across adolescence predicts early adult symptoms of alcohol use disorder via reward-related neural function. Psychol Med. 2018:1–10. doi: https://doi.org/10.1017/S003329171800137X.. Using a novel analytic approach, this study identified linkages between alcohol use trajectories during adolescence, reward reactivity in the ventral striatum during young adulthood, and later alcohol use disorder symptoms in a large community sample.
  17. 17.
    Charles NE, Ryan SR, Bray BC, Mathias CW, Acheson A, Dougherty DM. Altered developmental trajectories for impulsivity and sensation seeking among adolescent substance users. Addict Behav. 2016;60:235–41.  https://doi.org/10.1016/j.addbeh.2016.04.016.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    •• Khurana A, Romer D, Betancourt LM, Brodsky NL, Giannetta JM, Hurt H. Experimentation versus progression in adolescent drug use: A test of an emerging neurobehavioral imbalance model. Dev Psychopathol. 2015;27(3):901–13.  https://doi.org/10.1017/s0954579414000765 This paper found that heightened reward-seeking balanced by strong executive control was associated with substance use experimentation, whereas heightened reward-seeking and weak executive control was associated with progression of substance use. This is important work highlighting the importance of considering the balance between executive and reward systems and stages of substance use. CrossRefPubMedGoogle Scholar
  19. 19.
    Kim-Spoon J, Deater-Deckard K, Holmes C, Lee J, Chiu P, King-Casas B. Behavioral and neural inhibitory control moderates the effects of reward sensitivity on adolescent substance use. Neuropsychologia. 2016;91:318–26.  https://doi.org/10.1016/j.neuropsychologia.2016.08.028.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    • Lopez-Vergara HI, Merrill JE, Janssen T, Jackson KM. Social and individual-level predictors of alcohol use initiation and escalation: replicating and extending tests of differential effects. J Studies Alcohol Drugs. 2017;78(3):452–7.  https://doi.org/10.15288/jsad.2017.78.452 One of the largest prospective studies of alcohol-naïve youth, this 3-year study focused on risk factors (including sensation-seeking) for alcohol initiation and use. CrossRefGoogle Scholar
  21. 21.
    •• Quinn PD, Harden KP. Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Dev Psychopathol. 2013;25(1):223–39.  https://doi.org/10.1017/s0954579412000284.CrossRefPubMedGoogle Scholar
  22. 22.
    Fava NM, Trucco EM, Martz ME, Cope LM, Jester JM, Zucker RA et al. Childhood adversity, externalizing behavior, and substance use in adolescence: mediating effects of anterior cingulate cortex activation during inhibitory errors. Dev Psychopathol In press.Google Scholar
  23. 23.
    Hasler BP, Casement MD, Sitnick SL, Shaw DS, Forbes EE. Eveningness among late adolescent males predicts neural reactivity to reward and alcohol dependence 2 years later. Behav Brain Res. 2017;327:112–20.  https://doi.org/10.1016/j.bbr.2017.02.024.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    •• Nikolova YS, Knodt AR, Radtke SR, Hariri AR. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: possible differential markers of affective and impulsive pathways of risk for alcohol use disorder. Mol Psychiatry. 2016;21:348–56.  https://doi.org/10.1016/j.cogdev.2010.08.003.Personal This study is the first to identify distinct internalizing and externalizing pathways to problem drinking and how these risk phenotypes are associated with recent life stress. It is an important large cross-sectional study of older adolescents and young adults examining how stress and drinking affect two neural pathways associated with AUD risk: a positive emotion enhancement and behavioral impulsivity pathway, and a negative emotion relief and coping pathway. CrossRefPubMedGoogle Scholar
  25. 25.
    Telzer EH, Fuligni A, Lieberman MD, Galvan A. The effects of poor sleep quality on brain function and risk taking in adolescence. NeuroImage. 2013;71:275–83.  https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial.CrossRefPubMedGoogle Scholar
  26. 26.
    McNamee RL, Dunfee KL, Luna B, Clark DB, Eddy WF, Tarter RE. Brain activation, response inhibition, and increased risk for substance use disorder. Alcohol Clin Exp Res. 2008;32(3):405–13.  https://doi.org/10.1111/j.1530-0277.2007.00604.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Schweinsburg AD, Paulus MP, Barlett VC, Killeen LA, Caldwell LC, Pulido C, et al. An FMRI study of response inhibition in youths with a family history of alcoholism. Ann N Y Acad Sci. 2004;1021:391–4.CrossRefGoogle Scholar
  28. 28.
    Norman AL, Pulido C, Squeglia LM, Spadoni AD, Paulus MP, Tapert SF. Neural activation during inhibition predicts initiation of substance use in adolescence. Drug Alcohol Depend. 2011;119(3):216–23.  https://doi.org/10.1016/j.drugalcdep.2011.06.019.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hardee JE, Weiland BJ, Nichols TE, Welsh RC, Soules ME, Steinberg DB, et al. Development of impulse control circuitry in children of alcoholics. Biol Psychiatry. 2014;76(9):708–16.  https://doi.org/10.1016/j.biopsych.2014.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    • Heitzeg MM, Cope LM, Martz ME, Hardee JE. Neuroimaging risk markers for substance abuse: recent findings on inhibitory control and reward system functioning. Curr Addict Reports. 2015;2(2):91–103.  https://doi.org/10.1007/s40429-015-0048-9 Review paper that summarizes and discusses the functional neuroimaging literature on inhibitory control and reward in the context of risk for substance use disorder. CrossRefGoogle Scholar
  31. 31.
    Muller KU, Gan G, Banaschewski T, Barker GJ, Bokde AL, Buchel C, et al. No differences in ventral striatum responsivity between adolescents with a positive family history of alcoholism and controls. Addict Biol. 2015;20(3):534–45.  https://doi.org/10.1111/adb.12136.CrossRefPubMedGoogle Scholar
  32. 32.
    Bjork JM, Knutson B, Hommer DW. Incentive-elicited striatal activation in adolescent children of alcoholics. Addiction. 2008;103(8):1308–19.  https://doi.org/10.1111/j.1360-0443.2008.02250.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Dick DM, Latendresse SJ, Lansford JE, Budde JP, Goate A, Dodge KA, et al. Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Arch Gen Psychiatry. 2009;66(6):649–57.  https://doi.org/10.1001/archgenpsychiatry.2009.48.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Heitzeg MM, Casey BJ. Brain development and the risk for substance abuse. In: Charney DS, Nestler EJ, Sklar P, Buxbaum J, editors. Charney & Nestler’s Neurobiology of Mental Illness. 5th ed. New York: Oxford University Press; 2018. p. 629–39.Google Scholar
  35. 35.
    Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC. Psychiatric aspects of impulsivity. Am J Psychiatry. 2001;158(11):1783–93.  https://doi.org/10.1176/appi.ajp.158.11.1783.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zuckerman M. Behavioral expressions and biosocial bases of sensation seeking. New York: Cambridge University Press; 1994.Google Scholar
  37. 37.
    Harden KP, Tucker-Drob EM. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev Psychol. 2011;47(3):739–46.  https://doi.org/10.1037/a0023279.CrossRefPubMedGoogle Scholar
  38. 38.
    Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the switch to compulsive cocaine-taking. Science. 2008;320(5881):1352–5.  https://doi.org/10.1126/science.1158136.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hussong AM, Jones DJ, Stein GL, Baucom DH, Boeding S. An internalizing pathway to alcohol use and disorder. Psychol Addict Behav. 2011;25(3):390–404.CrossRefGoogle Scholar
  40. 40.
    Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.  https://doi.org/10.1038/npp.2009.104.CrossRefPubMedGoogle Scholar
  41. 41.
    Heatherton TF, Wagner DD. Cognitive neuroscience of self-regulation failure. Trends Cogn Sci. 2011;15(3):132–9.  https://doi.org/10.1016/j.tics.2010.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ernst M, Korelitz KE. Cerebral maturation in adolescence: behavioral vulnerability. L'Encephale. 2009;35(Suppl 6):S182–9.  https://doi.org/10.1016/s0013-7006(09)73469-4.CrossRefPubMedGoogle Scholar
  43. 43.
    Somerville LH, Jones RM, Casey BJ. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 2010;72(1):124–33.  https://doi.org/10.1016/j.bandc.2009.07.003.CrossRefPubMedGoogle Scholar
  44. 44.
    Peraza J, Cservenka A, Herting MM, Nagel BJ. Atypical parietal lobe activity to subliminal faces in youth with a family history of alcoholism. Am J Drug Alcohol Abuse. 2015;41(2):139–45.  https://doi.org/10.3109/00952990.2014.953251.CrossRefPubMedGoogle Scholar
  45. 45.
    Cservenka A, Fair DA, Nagel BJ. Emotional processing and brain activity in youth at high risk for alcoholism. Alcohol Clin Exp Res. 2014;38(7):1912–23.  https://doi.org/10.1111/acer.12435.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    • Hardee JE, Cope LM, Munier EC, Welsh RC, Zucker RA, Heitzeg MM. Sex differences in the development of emotion circuitry in adolescents at risk for substance abuse: a longitudinal fMRI study. Soc Cogn Affect Neurosci. 2017;12(6):965–75.  https://doi.org/10.1093/scan/nsx021 A unique longitudinal study examining sex differences in emotion processing neurocircuitry and one of the few studies to directly examine internalizing symptomatology in at-risk adolescents. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Edwards AC, Latendresse SJ, Heron J, Cho SB, Hickman M, Lewis G, et al. Childhood internalizing symptoms are negatively associated with early adolescent alcohol use. Alcohol Clin Exp Res. 2014;38(6):1680–8.  https://doi.org/10.1111/acer.12402.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cerda M, Bordelois PM, Keyes KM, Galea S, Koenen KC, Pardini D. Cumulative and recent psychiatric symptoms as predictors of substance use onset: does timing matter? Addiction. 2013;108(12):2119–28.  https://doi.org/10.1111/add.12323.CrossRefPubMedGoogle Scholar
  49. 49.
    Hulvershorn LA, Finn P, Hummer TA, Leibenluft E, Ball B, Gichina V, et al. Cortical activation deficits during facial emotion processing in youth at high risk for the development of substance use disorders. Drug Alcohol Depend. 2013;131(3):230–7.  https://doi.org/10.1016/j.drugalcdep.2013.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Casement MD, Shaw DS, Sitnick SL, Musselman SC, Forbes EE. Life stress in adolescence predicts early adult reward-related brain function and alcohol dependence. Soc Cogn Affect Neurosci. 2015;10(3):416–23.  https://doi.org/10.1093/scan/nsu061.CrossRefPubMedGoogle Scholar
  51. 51.
    Hill SY, De Bellis MD, Keshavan MS, Lowers L, Shen S, Hall J, et al. Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism. Biol Psychiatry. 2001;49(11):894–905.CrossRefGoogle Scholar
  52. 52.
    Glahn DC, Lovallo WR, Fox PT. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol Psychiatry. 2007;61(11):1306–9.  https://doi.org/10.1016/j.biopsych.2006.09.041.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kuntsche E, Muller S. Why do young people start drinking? Motives for first-time alcohol consumption and links to risky drinking in early adolescence. Eur Addict Res. 2012;18(1):34–9.  https://doi.org/10.1159/000333036.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther. 2015;153:55–78.  https://doi.org/10.1016/j.pharmthera.2015.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Heitzeg MM, Hardee JE, Beltz AM. Sex differences in the developmental neuroscience of adolescent substance use risk. Curr Opin Behav Sci. 2018;23:21–6.  https://doi.org/10.1016/j.cobeha.2018.01.020.CrossRefPubMedGoogle Scholar
  56. 56.
    • Hussong AM, Ennett ST, Cox MJ, Haroon M. A systematic review of the unique prospective association of negative affect symptoms and adolescent substance use controlling for externalizing symptoms. Psychol Addict Behav. 2017;31(2):137–47.  https://doi.org/10.1037/adb0000247 An important review paper that demonstrates the importance of controlling for externalizing symptoms and attending to subtypes of internalizing problems and specific substance use outcomes in studies investigating associations between negative affect and addiction risk. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Agrawal A, Verweij KJ, Gillespie NA, Heath AC, Lessov-Schlaggar CN, Martin NG, et al. The genetics of addiction—a translational perspective. Transl Psychiatry. 2012;2:e140.  https://doi.org/10.1038/tp.2012.54.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Schulenberg JE, Maslowsky J, Patrick ME, Martz ME. Substance use in the context of adolescent development. In: Brown SA, Zucker RA, editors. The Oxford handbook of adolescent substance abuse. New York: Oxford University Press; 2016.Google Scholar
  59. 59.
    Enoch MA. The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology. 2011;214(1):17–31.  https://doi.org/10.1007/s00213-010-1916-6.CrossRefPubMedGoogle Scholar
  60. 60.
    Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res. 2018;101:80–103.  https://doi.org/10.1016/j.jpsychires.2018.02.002.CrossRefPubMedGoogle Scholar
  61. 61.
    Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17(10):652–66.  https://doi.org/10.1038/nrn.2016.111.CrossRefPubMedGoogle Scholar
  62. 62.
    Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry. 2018:appiajp201817101124. doi: https://doi.org/10.1176/appi.ajp.2018.17101124.CrossRefGoogle Scholar
  63. 63.
    Tarokh L, Saletin JM, Carskadon MA. Sleep in adolescence: physiology, cognition and mental health. Neurosci Biobehav Rev. 2016;70:182–8.  https://doi.org/10.1016/j.neubiorev.2016.08.008.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, et al. Impact of sleep and circadian rhythms on addiction vulnerability in adolescents. Biol Psychiatry. 2018;83(12):987–96.  https://doi.org/10.1016/j.biopsych.2017.11.035.CrossRefPubMedGoogle Scholar
  65. 65.
    Kelly RJ, El-Sheikh M. Parental problem drinking and Children’s sleep: the role of ethnicity and socioeconomic status. J Family Psychology. 2016;30(6):708–19.  https://doi.org/10.1037/fam0000209.CrossRefGoogle Scholar
  66. 66.
    Hairston IS, Conroy DA, Heitzeg MM, Akbar NZ, Brower KJ, Zucker RA. Sleep mediates the link between resiliency and behavioural problems in children at high and low risk for alcoholism. J Sleep Res. 2016;25(3):341–9.  https://doi.org/10.1111/jsr.12382.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Conroy DA, Hairston IS, Zucker RA, Heitzeg MM. Sleep patterns in children of alcoholics and the relationship with parental reports. Austin J Sleep Disorders. 2015;2(1):1009.Google Scholar
  68. 68.
    Roberts RE, Duong HT. The prospective association between sleep deprivation and depression among adolescents. Sleep. 2014;37(2):239–44.  https://doi.org/10.5665/sleep.3388.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Prather AA, Bogdan R, Hariri AR. Impact of sleep quality on amygdala reactivity, negative affect, and perceived stress. Psychosom Med. 2013;75(4):350–8.  https://doi.org/10.1097/PSY.0b013e31828ef15b.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Killgore WDS. Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning. Sleep. 2013;36(11):1597–608.  https://doi.org/10.5665/sleep.3106.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jillian E. Hardee
    • 1
  • Lora M. Cope
    • 1
  • Meghan E. Martz
    • 1
  • Mary M. Heitzeg
    • 1
  1. 1.Department of Psychiatry and Addiction CenterUniversity of MichiganAnn ArborUSA

Personalised recommendations