Current Behavioral Neuroscience Reports

, Volume 4, Issue 4, pp 369–383 | Cite as

Roles of Inflammation and Depression in the Development of Gestational Diabetes

  • Thalia K. RobakisEmail author
  • Linn Aasly
  • Katherine Ellie Williams
  • Claire Clark
  • Natalie L. Rasgon
Mood and Anxiety Disorders (D Iosifescu, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Mood and Anxiety Disorders



The purpose of this review was to critically assess the available data regarding associations between inflammation and symptoms of depression among perinatal women, and to explore whether there is support for the hypothesis that inflammation associated with depression can represent a precipitating insult for the development of gestational diabetes, a known inflammatory morbidity of pregnancy.


Primary data papers that explored associations between inflammatory biomarkers and depressive symptoms in perinatal women were obtained via targeted searches of PubMed and Google Scholar, and via citations within relevant data papers and review articles.


Twenty primary data papers were found that attempted to associate levels of inflammatory biomarkers with depressive symptomatology in the perinatal period. Results from these papers were heterogeneous and did not describe a reproducible inflammatory profile of perinatal depression.


Depression in the perinatal period is a common disorder; however, available data do not indicate that there is a specific inflammatory picture associated with perinatal depression. We suggest that perinatal depression may be a heterogeneous construct, and that inflammation may be relevant to it in the context of other inflammatory morbidities of pregnancy. There is some circumstantial support for the hypothesis that inflammation associated with depression may contribute to risk for gestational diabetes, but as yet, no direct tests of this hypothesis have been published.


Inflammation Gestational diabetes Perinatal depression Postpartum depression Cytokine Insulin 


Compliance with Ethical Standards

Conflict of Interest

Dr. Robakis, Dr. Aasly, Dr. Williams, and Dr. Clark have nothing to declare. Dr. Rasgon was a consultant for Sunovion.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370(9590):851–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen LS, Eaton WW, Gallo JJ, Nestadt G. Understanding the heterogeneity of depression through the triad of symptoms, course and risk factors: a longitudinal, population-based study. J Affect Disord. 2000;59(1):1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne LM, Monk C. Perinatal depression—the fourth inflammatory morbidity of pregnancy?: theory and literature review. Psychoneuroendocrinology. 2013;38(10):1929–52.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Leff-Gelman P, Mancilla-Herrera I, Flores-Ramos M, Cruz-Fuentes C, Reyes-Grajeda JP, del Pilar García-Cuétara M, et al. The immune system and the role of inflammation in perinatal depression. Neurosci Bull. 2016;32(4):398–420.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. 2017;27(6):554.PubMedCrossRefGoogle Scholar
  7. 7.
    Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2016;77:25–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Furtado M, Katzman MA. Examining the role of neuroinflammation in major depression. Psychiatry Res. 2015;229(1):27–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Pariante CM, Pearce BD, Pisell TL, Sanchez CI, Po C, Su C, et al. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology. 1999;140:4359–66.PubMedCrossRefGoogle Scholar
  10. 10.
    McKay MS, Zakzanis KK. The impact of treatment on HPA axis activity in unipolar major depression. J Psychiatr Res. 2010;44(3):183–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci. 2012;109(16):5995–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Stuart MJ, Baune BT. Depression and type 2 diabetes: inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev. 2012;36(1):658–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332(20):1351–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci. 1994;91(11):4854–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279(47):48487–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Chapter four-regulation of innate and adaptive immunity by TGFβ. Adv Immunol. 2017;134:137–233.PubMedCrossRefGoogle Scholar
  18. 18.
    Pan A, Keum N, Okereke OI, Sun Q, Kivimaki M, Rubin RR, et al. Bidirectional association between depression and metabolic syndrome. Diabetes Care. 2012;35(5):1171–80.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kashani L, Omidvar T, Farazmand B, Modabbernia A, Ramzanzadeh F, Tehraninejad ES, et al. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology. 2013;38(6):767–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin KW, Wroolie TE, Robakis T, Rasgon NL. Adjuvant pioglitazone for unremitted depression: clinical correlates of treatment response. Psychiatry Res. 2015;230(3):846–52.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Abrahamian H, Hofmann P, Prager R, Toplak H. Diabetes mellitus and co-morbid depression: treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group). Neuropsychiatr Dis Treat. 2009;5:261.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lustman PJ, Williams MM, Sayuk GS, Nix BD, Clouse RE. Factors influencing glycemic control in type 2 diabetes during acute-and maintenance-phase treatment of major depressive disorder with bupropion. Diabetes Care. 2007;30(3):459–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002;51(6):1884–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α. Cytokine Growth Factor Rev. 2003;14(5):447–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Leo R, Di Lorenzo G, Tesauro M, Cola C, Fortuna E, Zanasi M, et al. Decreased plasma adiponectin concentration in major depression. Neurosci Lett. 2006;407(3):211–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Lehto SM, Huotari A, Niskanen L, Tolmunen T, Koivumaa-Honkanen H, Honkalampi K, et al. Serum adiponectin and resistin levels in major depressive disorder. Acta Psychiatr Scand. 2010;121(3):209–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Zeugmann S, Quante A, Heuser I, Schwarzer R, Anghelescu I. Inflammatory biomarkers in 70 depressed inpatients with and without the metabolic syndrome. J Clin Psychiatry. 2010;71(8):1007–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Mamalakis G, Kiriakakis M, Tsibinos G, Hatzis C, Flouri S, Mantzoros C, et al. Depression and serum adiponectin and adipose omega-3 and omega-6 fatty acids in adolescents. Pharmacol Biochem Behav. 2006;85(2):474–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Pan A, Ye X, Franco OH, Li H, Yu Z, Wang J, et al. The association of depressive symptoms with inflammatory factors and adipokines in middle-aged and older Chinese. PLoS One. 2008;3(1):e1392.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hu Y, Dong X, Chen J. Adiponectin and depression: a meta-analysis. Biomed Rep. 2015;3(1):38–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Carvalho AF, Rocha DQ, McIntyre RS, Mesquita LM, Köhler CA, Hyphantis TN, et al. Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res. 2014;59:28–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor VH, MacQueen GM. The role of adipokines in understanding the associations between obesity and depression. J Obes. 2010;2010(748048):6.Google Scholar
  33. 33.
    Liu J, Guo M, Zhang D, Cheng SY, Liu M, Ding J, et al. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proc Natl Acad Sci. 2012;109(30):12248–53.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Haleem DJ, Sheikh S, Fawad A, Haleem MA. Fasting leptin and glucose in normal weight, over weight and obese men and women diabetes patients with and without clinical depression. Metab Brain Dis. 2017;32(3):757–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Milaneschi Y, Lamers F, Bot M, Drent ML, Penninx BW. Leptin dysregulation is specifically associated with major depression with atypical features: evidence for a mechanism connecting obesity and depression. Biol Psychiatry. 2017;81(9):807–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Köhler, C.A., Freitas, T.H., Stubbs, B. et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. 2017; 1–12.
  37. 37.
    Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36(12):2452.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    • Raison CL, Miller AH. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol Psychiatry. 2013;18(1):15. This review summarizes evidence for a bidirectional, functional linkage between the physiology of inflammation and the symptoms of depression. PubMedCrossRefGoogle Scholar
  39. 39.
    Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Schlossberger V, Schober L, Rehnitz J, et al. The success of assisted reproduction technologies in relation to composition of the total regulatory T cell (Treg) pool and different Treg subsets. Hum Reprod. 2013;28:3062–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruocco MG, Chaouat G, Florez L, Bensussan A, & Klatzmann D. Regulatory T-cells in pregnancy: historical perspective, state of the art, and burning questions. Front Immunol. 2014;5.Google Scholar
  43. 43.
    Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Allolio B, Hoffmann J, Linton EA, Winkelmann W, Kusche M, Schulte HM. Diurnal salivary cortisol patterns during pregnancy and after delivery: relationship to plasma corticotrophin-releasing-hormone. Clin Endocrinol. 1990;33(2):279–89.CrossRefGoogle Scholar
  45. 45.
    • Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, & Wagner GP. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proceedings of the National Academy of Sciences, 2017;114(32):E6566–E6575. This work provides molecular evidence that ancient inflammatory signals were repurposed to facilitate the process of embryo implantation in mammals. Google Scholar
  46. 46.
    Norman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007;7(1):S7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Greci LS, Gilson GJ, Nevils B, Izquierdo LA, Qualls CR, Curet LB. Is amniotic fluid analysis the key to preterm labor? A model using interleukin-6 for predicting rapid delivery. Am J Obstet Gynecol. 1998;179(1):172–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Keski-Nisula L, Hirvonen MR, Roponen M, Heinonen S, Pekkanen J. Spontaneous and stimulated interleukin-6 and tumor necrosis factor-alpha production at delivery and three months after birth. Eur Cytokine Netw. 2004;15(1):67–72.PubMedGoogle Scholar
  49. 49.
    Christian LM, Porter K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: effects of maternal body mass index. Cytokine. 2014;70:134–40.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Friis CM, Paasche Roland MC, Godang K, et al. Adiposity-related inflammation: effects of pregnancy. Obesity. 2013;21:E124–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Kääpä P, Koistinen E. Maternal and neonatal C-reactive protein after interventions during delivery. Acta Obstet Gynecol Scand. 1993;72(7):543–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Poston L. Interleukin 8 expression in human myometrium: changes in relation to labor onset and with gestational age. Am J Reprod Immunol. 2000;43(5):272–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Esplin MS, Peltier MR, Hamblin S, Smith S, Fausett MB, Dildy GA, et al. Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor. Placenta. 2005;26(8):661–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Garces MF, Sanchez E, Ruíz-Parra AI, Rubio-Romero JA, Angel-Müller E, Suarez MA, et al. Serum chemerin levels during normal human pregnancy. Peptides. 2013;42:138–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Rebelo F, Farias DR, Struchiner CJ, Kac G. Plasma adiponectin and depressive symptoms during pregnancy and the postpartum period: a prospective cohort study. J Affect Disord. 2016;194:171–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71(2):171–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Albacar G, Sans T, Martín-Santos R, García-Esteve L, Guillamat R, Sanjuan J, et al. Thyroid function 48h after delivery as a marker for subsequent postpartum depression. Psychoneuroendocrinology. 2010;35(5):738–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Cassidy-Bushrow AE, Peters RM, Johnson DA, Templin TN. Association of depressive symptoms with inflammatory biomarkers among pregnant African-American women. J Reprod Immunol. 2012;94(2):202–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Scrandis DA, Langenberg P, Tonelli LH, Sheikh TM, Manogura AC, Alberico LA, et al. Prepartum depressive symptoms correlate positively with C-reactive protein levels and negatively with tryptophan levels: a preliminary report. Int J Child Health Hum Dev. 2008;1(2):167.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Simpson W, Steiner M, Coote M, Frey BN. Relationship between inflammatory biomarkers and depressive symptoms during late pregnancy and the early postpartum period: a longitudinal study. Rev Bras Psiquiatr. 2016;38(3):190–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Maes M, Lin AH, Ombelet W, Stevens K, Kenis G, De Jongh R, et al. Immune activation in the early puerperium is related to postpartum anxiety and depressive symptoms. Psychoneuroendocrinology. 2000;25(2):121–37.PubMedCrossRefGoogle Scholar
  62. 62.
    Christian LM, Franco A, Glaser R, Iams JD. Depressive symptoms are associated with elevated serum proinflammatory cytokines among pregnant women. Brain Behav Immun. 2009;23(6):750–4.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Boufidou F, Lambrinoudaki I, Argeitis J, Zervas IM, Pliatsika P, Leonardou AA, et al. CSF and plasma cytokines at delivery and postpartum mood disturbances. J Affect Disord. 2009;115(1):287–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Fransson E, Dubicke A, Byström B, Ekman-Ordeberg G, Hjelmstedt A, Lekander M. Negative emotions and cytokines in maternal and cord serum at preterm birth. Am J Reprod Immunol. 2012;67(6):506–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Groer MW, Morgan K. Immune, health and endocrine characteristics of depressed postpartum mothers. Psychoneuroendocrinology. 2007;32(2):133–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Blackmore ER, Moynihan JA, Rubinow DR, Pressman EK, Gilchrist M, O’Connor TG. Psychiatric symptoms and proinflammatory cytokines in pregnancy. Psychosom Med. 2011;73(8):656.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Okun ML, Luther J, Prather AA, Perel JM, Wisniewski S, Wisner KL. Changes in sleep quality, but not hormones predict time to postpartum depression recurrence. J Affect Disord. 2011;130(3):378–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Skalkidou A, Sylvén SM, Papadopoulos FC, Olovsson M, Larsson A, Sundström-Poromaa I. Risk of postpartum depression in association with serum leptin and interleukin-6 levels at delivery: a nested case–control study within the UPPSAT cohort. Psychoneuroendocrinology. 2009;34(9):1329–37.PubMedCrossRefGoogle Scholar
  69. 69.
    Corwin EJ, Pajer K, Paul S, Lowe N, Weber M, McCarthy DO. Bidirectional psychoneuroimmune interactions in the early postpartum period influence risk of postpartum depression. Brain Behav Immun. 2015;49:86–93.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shelton MM, Schminkey DL, Groer MW. Relationships among prenatal depression, plasma cortisol, and inflammatory cytokines. Biol Res Nurs. 2015;17(3):295–302.PubMedCrossRefGoogle Scholar
  71. 71.
    Yildiz G, Senturk MB, Yildiz P, Cakmak Y, Budak MS, Cakar E. Serum serotonin, leptin, and adiponectin changes in women with postpartum depression: controlled study. Arch Gynecol Obstet. 2017;295(4):853–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen C, Gao J, Zhang J, Jia L, Yu T, Zheng Y. Serum leptin level measured 48 h after delivery is associated with development of postpartum depressive symptoms: a 3-month follow-up study. Arch Womens Ment Health. 2016;19(6):1001–8.PubMedCrossRefGoogle Scholar
  73. 73.
    • PACT Consortium. Heterogeneity of postpartum depression: a latent class analysis. Lancet Psychiatry. 2015;2(1):59–67. This study analyzes the clinical characteristics of a large number of women with postpartum depression, identifying three subtypes with distinct patterns of onset, timing, and severity. CrossRefGoogle Scholar
  74. 74.
    Putnam KT, Wilcox M, Robertson-Blackmore E, Sharkey K, Bergink V, Munk-Olsen T, et al. Clinical phenotypes of perinatal depression and time of symptom onset: analysis of data from an International Consortium. Lancet Psychiatry. 2017;4(6):477–85.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang T, Rifas-Shiman SL, Ertel KA, Rich-Edwards J, Kleinman K, Gillman MW, et al. Pregnancy hyperglycaemia and risk of prenatal and postpartum depressive symptoms. Paediatr Perinat Epidemiol. 2015;29(4):281–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gezginç K, Sahingöz M, Uguz F, Yazıcı F. Is depression associated with glucose tolerance abnormality in pregnant women? A cross-sectonal study. Arch Psychiatr Nurs. 2013;27(5):219–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Katon JG, Russo J, Gavin AR, Melville JL, Katon WJ. Diabetes and depression in pregnancy: is there an association? J Women’s Health (2002). 2011;20:983–9.CrossRefGoogle Scholar
  78. 78.
    Langer N, Langer O. Comparison of pregnancy mood profiles in gestational diabetes and preexisting diabetes. Diabetes Educ. 2000;26(4):667–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Bowers K, Laughon SK, Kim S, Mumford SL, Brite J, Kiely M, et al. The association between a medical history of depression and gestational diabetes in a large multi-ethnic cohort in the United States. Paediatr Perinat Epidemiol. 2013;27:323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Morrison C, McCook JG, Bailey BA. First trimester depression scores predict development of gestational diabetes mellitus in pregnant rural Appalachian women. J Psychosom Obstet Gynaecol. 2015;1–5.Google Scholar
  81. 81.
    Ertel KA, Silveira M, Pekow P, Braun B, Manson JE, Solomon CG, et al. Prenatal depressive symptoms and abnormalities of glucose tolerance during pregnancy among Hispanic women. Arch Women’s Ment Health. 2014;17:65–72.CrossRefGoogle Scholar
  82. 82.
    Miller ES, Peri MR, Gossett DR. The association between diabetes and postpartum depression. Arch Women’s Ment Health. 2016;19(1):183–6.CrossRefGoogle Scholar
  83. 83.
    Nicklas JM, Miller LJ, Zera CA, Davis RB, Levkoff SE, Seely EW. Factors associated with depressive symptoms in the early postpartum period among women with recent gestational diabetes mellitus. Matern Child Health J. 2013;17(9):1665–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Walmer R, Huynh J, Wenger J, Ankers E, Mantha AB, Ecker J, et al. Mental health disorders subsequent to gestational diabetes mellitus differ by race/ethnicity. Depress Anxiety. 2015;32(10):774–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol. 1990;162(4):1008–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Lekva T, Norwitz ER, Aukrust P, Ueland T. Impact of systemic inflammation on the progression of gestational diabetes mellitus. Curr Diab Rep. 2016;16(4):1–11.CrossRefGoogle Scholar
  87. 87.
    Gomes CP, Torloni MR, Gueuvoghlanian-Silva BY, Alexandre SM, Mattar R, Daher S. Cytokine levels in gestational diabetes mellitus: a systematic review of the literature. Am J Reprod Immunol. 2013;69(6):545–57.PubMedGoogle Scholar
  88. 88.
    Mahmoud F, Abul H, Omu A, Haines D. Lymphocyte sub-populations in gestational diabetes. Am J Reprod Immunol. 2005;53(1):21–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Pendeloski KPT, Mattar R, Torloni MR, Gomes CP, Alexandre SM, Daher S. Immunoregulatory molecules in patients with gestational diabetes mellitus. Endocrine. 2015;50(1):99–109.PubMedCrossRefGoogle Scholar
  90. 90.
    Schober L, Radnai D, Spratte J, et al. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin Exp Immunol. 2014;177:76–85.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Xie BG, Jin S, Zhu WJ. Expression of toll-like receptor 4 in maternal monocytes of patients with gestational diabetes mellitus. Exp Ther Med. 2014;7(1):236–40.PubMedGoogle Scholar
  92. 92.
    Kuzmicki M, Telejko B, Wawrusiewicz-Kurylonek N, Lipinska D, Pliszka J, Wilk J, et al. The expression of genes involved in NF-κB activation in peripheral blood mononuclear cells of patients with gestational diabetes. Eur J Endocrinol. 2013;168(3):419–27.PubMedCrossRefGoogle Scholar
  93. 93.
    Winkler G, Cseh K, Baranyi É, Melczer Z, Speer G, Hajós P, et al. Tumor necrosis factor system in insulin resistance in gestational diabetes. Diabetes Res Clin Pract. 2002;56(2):93–9. ety, 32(10), 774–782PubMedCrossRefGoogle Scholar
  94. 94.
    Kinalski M, Telejko B, Kuźmicki M, Krętowski A, Kinalska I. Tumor necrosis factor alpha system and plasma adiponectin concentration in women with gestational diabetes. Horm Metab Res. 2005;37(07):450–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Altinova AE, Toruner F, Bozkurt N, Bukan N, Karakoc A, Yetkin I, et al. Circulating concentrations of adiponectin and tumor necrosis factor-α in gestational diabetes mellitus. Gynecol Endocrinol. 2007;23(3):161–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Gao XL, Yang HX, Zhao Y. Variations of tumor necrosis factor-alpha, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chin Med J. 2008;121(8):701–5.PubMedGoogle Scholar
  97. 97.
    Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91(10):4137–43.PubMedCrossRefGoogle Scholar
  98. 98.
    Salmi AA, Zaki NM, Zakaria R, Nor Aliza AG, Rasool AH. Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa. 2012;41(2):96–104.PubMedCrossRefGoogle Scholar
  99. 99.
    Maged AM, Moety GA, Mostafa WA, et al. Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2014;27:1108–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Kuzmicki M, Telejko B, Zonenberg A, et al. Circulating pro- and anti-inflammatory cytokines in Polish women with gestational diabetes. Horm Metab Res. 2008;40:556–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL, Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care. 2003;26(3):819–24.PubMedCrossRefGoogle Scholar
  102. 102.
    Ozgu-Erdinc AS, Yilmaz S, Yeral MI, Seckin KD, Erkaya S, Danisman AN. Prediction of gestational diabetes mellitus in the first trimester: comparison of C-reactive protein, fasting plasma glucose, insulin and insulin sensitivity indices. J Matern Fetal Neonatal Med. 2015;28(16):1957–62.PubMedCrossRefGoogle Scholar
  103. 103.
    Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A, et al. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol. 2009;25(4):258–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Morisset AS, Dube MC, Cote JA, Robitaille J, Weisnagel S, Tchernof A. Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstet Gynecol Scand. 2011;90(5):524–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Hassiakos D, Eleftheriades M, Papastefanou I, Lambrinoudaki I, Kappou D, Lavranos D, et al. Increased maternal serum interleukin-6 concentrations at 11 to 14 weeks of gestation in low risk pregnancies complicated with gestational diabetes mellitus: development of a prediction model. Horm Metab Res. 2016;48(01):35–41.PubMedGoogle Scholar
  106. 106.
    Nergiz S, Altınkaya ÖS, Küçük M, Yüksel H, Sezer SD, Kurt Ömürlü İ, et al. Circulating galanin and IL-6 concentrations in gestational diabetes mellitus. Gynecol Endocrinol. 2014;30(3):236–40.PubMedCrossRefGoogle Scholar
  107. 107.
    Georgiou HM, Lappas M, Georgiou GM, Marita A, Bryant VJ, Hiscock R, et al. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008;45:157–65.PubMedCrossRefGoogle Scholar
  108. 108.
    Abdel Gader AG, Khashoggi TY, Habib F, Awadallah SB. Haemostatic and cytokine changes in gestational diabetes mellitus. Gynecol Endocrinol. 2011;27:356–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Gueuvoghlanian-Silva BY, Torloni MR, Mattar R, de Oliveira LS, Scomparini FB, Nakamura MU, et al. Profile of inflammatory mediators in gestational diabetes mellitus: phenotype and genotype. Am J Reprod Immunol. 2012;67:241–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Lygnos MC, Pappa KI, Papadaki HA, Relakis C, Koumantakis E, Anagnou NP, et al. Changes in maternal plasma levels of VEGF, bFGF, TGF-β1, ET-1 and sKL during uncomplicated pregnancy, hypertensive pregnancy and gestational diabetes. In Vivo. 2006;20(1):157–63.PubMedGoogle Scholar
  111. 111.
    Mrizak I, Grissa O, Henault B, Fekih M, Bouslema A, Boumaiza I, et al. Placental infiltration of inflammatory markers in gestational diabetic women. Gen Physiol Biophys. 2014;33:169–76.PubMedCrossRefGoogle Scholar
  112. 112.
    Abell SK, Court D, Boyle JA, et al. Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci. 2015;16:13442–73.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bao W, Baecker A, Song Y, et al. Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism. 2015;64:756–64.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ranheim T, Haugen F, Staff AC, Braekke K, Harsem NK, Drevon CA. Adiponectin is reduced in gestational diabetes mellitus in normal weight women. Acta Obstet Gynecol Scand. 2004;83(4):341–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Worda C, Leipold H, Gruber C, Kautzky-Willer A, Knöfler M, Bancher-Todesca D. Decreased plasma adiponectin concentrations in women with gestational diabetes mellitus. Am J Obstet Gynecol. 2004;191(6):2120–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Vitoratos N, Valsamakis G, Mastorakos G, Boutsiadis A, Salakos N, Kouskouni E, et al. Pre-and early post-partum adiponectin and interleukin-1beta levels in women with and without gestational diabetes. Hormones (Athens). 2008;7(3):230–6.CrossRefGoogle Scholar
  117. 117.
    Kautzky-Willer A, Pacini G, Tura A, Bieglmayer C, Schneider B, Ludvik B, et al. Increased plasma leptin in gestational diabetes. Diabetologia. 2001;44(2):164–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Fatima SS, Alam F, Chaudhry B, Khan TA. Elevated levels of chemerin, leptin, and interleukin-18 in gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2017;30(9):1023–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Mm WQ, Fan J, Khor S, Song M, Hong W, Dai X. Serum vaspin levels and vaspin mRNA expression in subcutaneous adipose tissue in women with gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol. 2014;182:98–101.PubMedCrossRefGoogle Scholar
  120. 120.
    Jia X, Wang S, Ma N, Li X, Guo L, Liu X, et al. Comparative analysis of vaspin in pregnant women with and without gestational diabetes mellitus and healthy non-pregnant women. Endocrine. 2015;48(2):533–40.PubMedCrossRefGoogle Scholar
  121. 121.
    Tang Y, Qiao P, Qu X, Bao Y, Li Y, Liao Y, et al. Comparison of serum vaspin levels and vaspin expression in adipose tissue and smooth muscle tissue in pregnant women with and without gestational diabetes. Clin Endocrinol. 2017;87(4):344–349.Google Scholar
  122. 122.
    Stepan H, Kralisch S, Klostermann K, Schrey S, Reisenbüchler C, Verlohren M, et al. Preliminary report: circulating levels of the adipokine vaspin in gestational diabetes mellitus and preeclampsia. Metabolism. 2010;59(7):1054–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Görkem Ü, Küçükler FK, Toğrul C, Güngör T. Are adipokines associated with gestational diabetes mellitus? J Turk Ger Gynecol Assoc. 2016;17(4):186.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Barker G, Lim R, Rice GE, Lappas M. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity. J Matern Fetal Neonatal Med. 2012;25(11):2274–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Pfau D, Stepan H, Kratzsch J, Verlohren M, Verlohren HJ, Drynda K, et al. Circulating levels of the adipokine chemerin in gestational diabetes mellitus. Hormone Res Paediatr. 2010;74(1):56–61.CrossRefGoogle Scholar
  126. 126.
    Poppel MN, Zeck W, Ulrich D, Schest EC, Hirschmugl B, Lang U, et al. Cord blood chemerin: differential effects of gestational diabetes mellitus and maternal obesity. Clin Endocrinol. 2014;80(1):65–72.CrossRefGoogle Scholar
  127. 127.
    Pan BL, Ma RM. Correlation of serum omentin-1 and chemerin with gestational diabetes mellitus. Nan Fang Yi Ke Da Xue Xue Bao. 2016;36(9):1231–6.PubMedGoogle Scholar
  128. 128.
    Hare KJ, Bonde L, Svare JA, Randeva HS, Asmar M, Larsen S, et al. Decreased plasma chemerin levels in women with gestational diabetes mellitus. Diabet Med. 2014;31(8):936–40.PubMedCrossRefGoogle Scholar
  129. 129.
    Lacroix M, Battista MC, Doyon M, Ménard J, Ardilouze JL, Perron P, et al. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Clin. Chem. Lab. Med. (CCLM), 2013;55(11):1805-1812.Google Scholar
  130. 130.
    Thagaard IN, Krebs L, Holm JC, Lange T, Larsen T, & Christiansen M. Adiponectin and leptin as first trimester markers for gestational diabetes mellitus: a cohort study. Clin Chem Lab Med. 2017.Google Scholar
  131. 131.
    Lappas M. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro. Metabolism. 2015;64(5):642–53.PubMedCrossRefGoogle Scholar
  132. 132.
    Ryan EA, Enns L. Role of gestational hormones in the induction of insulin resistance. J Clin Endocrinol Metabol. 1988;67(2):341–7.CrossRefGoogle Scholar
  133. 133.
    McLachlan KA, O'neal D, Jenkins A, Alford FP. Do adiponectin, TNFα, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev. 2006;22(2):131–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Lindsay RS, Loeken MR. Metformin use in pregnancy: promises and uncertainties. Diabetologia. 2017;1–8.Google Scholar
  135. 135.
    Hickman MA, McBride R, Boggess KA, Strauss R. Metformin compared with insulin in the treatment of pregnant women with overt diabetes: a randomized controlled trial. Am J Perinatol. 2013;30(06):483–90.PubMedCrossRefGoogle Scholar
  136. 136.
    Diamanti-Kandarakis E, Paterakis T, Alexandraki K, Piperi C, Aessopos A, Katsikis I, et al. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Hum Reprod. 2006;21(6):1426–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thalia K. Robakis
    • 1
    Email author
  • Linn Aasly
    • 1
  • Katherine Ellie Williams
    • 1
  • Claire Clark
    • 2
  • Natalie L. Rasgon
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA
  2. 2.Program in Clinical PsychologyPalo Alto UniversityPalo AltoUSA

Personalised recommendations