Current Transplantation Reports

, Volume 5, Issue 4, pp 369–372 | Cite as

Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation

  • Jelena M. Janjic
  • Vijay S. GorantlaEmail author
Invited Commentary


This article focuses on the unmet needs and key challenges in vascularized composite allotransplantation (VCA) and the opportunities for current nanotechnology advances in therapeutics and diagnostics for personalized treatment and optimization of clinical outcomes. The transformative role of nanoimaging as a noninvasive tool in the longitudinal surveillance of acute and chronic rejection after VCA is critically reviewed. Nanoimaging can inform management decisions and guide continuous treatment adjustments over time in patients to improve safety and efficacy in VCA. Nanoimaging signatures can be unbiased and quantitative measures of treatment effectiveness as well as medication adherence, both of which are critical prerequisites for overall graft survival and patient quality of life.


Nanoimaging Immunomodulation Chronic rejection Acute rejection Monitoring Perfluorocarbons Nanoemulsions Imaging MRI NIRF PET 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Gorantla VS, Demetris AJ. Acute and chronic rejection in upper extremity transplantation: what have we learned? Hand Clin. 2011;27(4):481–93 ix.CrossRefGoogle Scholar
  2. 2.
    Lakkis FG, Billiar TR. Molecular analysis of transplant rejection: marching onward. J Exp Med. 2013;210(11):2147–9.CrossRefGoogle Scholar
  3. 3.
    Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.CrossRefGoogle Scholar
  4. 4.
    Tasciotti E, Cabrera FJ, Evangelopoulos M, Martinez JO, Thekkedath UR, Kloc M, et al. The emerging role of nanotechnology in cell and organ transplantation. Transplantation. 2016;100(8):1629–38.CrossRefGoogle Scholar
  5. 5.
    Stingl G, Katz SI, Green I, Shevach EM. The functional role of Langerhans cells. J Invest Dermatol. 1980;74(5):315–8.CrossRefGoogle Scholar
  6. 6.
    Azuma H, Tilney NL. Chronic graft rejection. Curr Opin Immunol. 1994;6(5):770–6.CrossRefGoogle Scholar
  7. 7.
    Marzano AV, Cugno M, Trevisan V, Fanoni D, Venegoni L, Berti E, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162(1):100–7.CrossRefGoogle Scholar
  8. 8.
    Foss CA, Sanchez-Bautista J, Jain SK. Imaging macrophage-associated inflammation. Semin Nucl Med. 2018;48(3):242–5.CrossRefGoogle Scholar
  9. 9.
    Gustafsson B, Youens S, Louie AY. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation. Bioconjug Chem. 2006;17(2):538–47.CrossRefGoogle Scholar
  10. 10.
    Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med. 2011;65(4):1144–53.CrossRefGoogle Scholar
  11. 11.
    Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med. 2003;50(2):309–14.CrossRefGoogle Scholar
  12. 12.
    Riou A, Chauveau F, Cho TH, Marinescu M, Nataf S, Nighoghossian N, et al. MRI assessment of the intra-carotid route for macrophage delivery after transient cerebral ischemia. NMR Biomed. 2013;26(2):115–23.CrossRefGoogle Scholar
  13. 13.
    Weise G, Basse-Luesebrink TC, Wessig C, Jakob PM, Stoll G. In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI. Exp Neurol. 2011;229(2):494–501.CrossRefGoogle Scholar
  14. 14.
    O’Neill AS, Terry SY, Brown K, Meader L, Wong AM, Cooper JD, et al. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5(1):69.CrossRefGoogle Scholar
  15. 15.
    Wu YL, Ye Q, Eytan DF, Liu L, Rosario BL, Hitchens TK, et al. Magnetic resonance imaging investigation of macrophages in acute cardiac allograft rejection after heart transplantation. Circ Cardiovasc Imaging. 2013;6(6):965–73.CrossRefGoogle Scholar
  16. 16.
    Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H, et al. Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation. 2008;118(2):149–56.CrossRefGoogle Scholar
  17. 17.
    Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc. 2008;130(9):2832–41.CrossRefGoogle Scholar
  18. 18.
    Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28(7):363–70.CrossRefGoogle Scholar
  19. 19.
    Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–34.CrossRefGoogle Scholar
  20. 20.
    Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–53.CrossRefGoogle Scholar
  21. 21.
    Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer. 2018;6(1):105.CrossRefGoogle Scholar
  22. 22.
    Stoll G, Basse-Lusebrink T, Weise G, Jakob P. Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(4):438–47.CrossRefGoogle Scholar
  23. 23.
    Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, et al. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology. 2013;2(2):e23034.CrossRefGoogle Scholar
  24. 24.
    Kadayakkara DK, Beatty PL, Turner MS, Janjic JM, Ahrens ET, Finn OJ. Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas. 2010;39(4):510–5.CrossRefGoogle Scholar
  25. 25.
    Balducci A, Helfer BM, Ahrens ET, O’Hanlon CF 3rd, Wesa AK. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J Inflamm (Lond). 2012;9(1):24.CrossRefGoogle Scholar
  26. 26.
    Zhong J, Narsinh K, Morel PA, Xu H, Ahrens ET. In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system. PLoS One. 2015;10(10):e0140238.CrossRefGoogle Scholar
  27. 27.
    Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–63.CrossRefGoogle Scholar
  28. 28.
    Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013;26(7):860–71.CrossRefGoogle Scholar
  29. 29.
    Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492–501.CrossRefGoogle Scholar
  30. 30.
    Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Investig. 2012;92(4):636–45.CrossRefGoogle Scholar
  31. 31.
    Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27(3):261–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical Sciences, School of PharmacyDuquesne UniversityPittsburghUSA
  2. 2.Chronic Pain Research ConsortiumDuquesne UniversityPittsburghUSA
  3. 3.Wake Forest Institute for Regenerative MedicineWinston-SalemUSA

Personalised recommendations