Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation

  • 49 Accesses

  • 2 Citations


This article focuses on the unmet needs and key challenges in vascularized composite allotransplantation (VCA) and the opportunities for current nanotechnology advances in therapeutics and diagnostics for personalized treatment and optimization of clinical outcomes. The transformative role of nanoimaging as a noninvasive tool in the longitudinal surveillance of acute and chronic rejection after VCA is critically reviewed. Nanoimaging can inform management decisions and guide continuous treatment adjustments over time in patients to improve safety and efficacy in VCA. Nanoimaging signatures can be unbiased and quantitative measures of treatment effectiveness as well as medication adherence, both of which are critical prerequisites for overall graft survival and patient quality of life.

This is a preview of subscription content, log in to check access.


  1. 1.

    Gorantla VS, Demetris AJ. Acute and chronic rejection in upper extremity transplantation: what have we learned? Hand Clin. 2011;27(4):481–93 ix.

  2. 2.

    Lakkis FG, Billiar TR. Molecular analysis of transplant rejection: marching onward. J Exp Med. 2013;210(11):2147–9.

  3. 3.

    Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

  4. 4.

    Tasciotti E, Cabrera FJ, Evangelopoulos M, Martinez JO, Thekkedath UR, Kloc M, et al. The emerging role of nanotechnology in cell and organ transplantation. Transplantation. 2016;100(8):1629–38.

  5. 5.

    Stingl G, Katz SI, Green I, Shevach EM. The functional role of Langerhans cells. J Invest Dermatol. 1980;74(5):315–8.

  6. 6.

    Azuma H, Tilney NL. Chronic graft rejection. Curr Opin Immunol. 1994;6(5):770–6.

  7. 7.

    Marzano AV, Cugno M, Trevisan V, Fanoni D, Venegoni L, Berti E, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162(1):100–7.

  8. 8.

    Foss CA, Sanchez-Bautista J, Jain SK. Imaging macrophage-associated inflammation. Semin Nucl Med. 2018;48(3):242–5.

  9. 9.

    Gustafsson B, Youens S, Louie AY. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation. Bioconjug Chem. 2006;17(2):538–47.

  10. 10.

    Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med. 2011;65(4):1144–53.

  11. 11.

    Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med. 2003;50(2):309–14.

  12. 12.

    Riou A, Chauveau F, Cho TH, Marinescu M, Nataf S, Nighoghossian N, et al. MRI assessment of the intra-carotid route for macrophage delivery after transient cerebral ischemia. NMR Biomed. 2013;26(2):115–23.

  13. 13.

    Weise G, Basse-Luesebrink TC, Wessig C, Jakob PM, Stoll G. In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI. Exp Neurol. 2011;229(2):494–501.

  14. 14.

    O’Neill AS, Terry SY, Brown K, Meader L, Wong AM, Cooper JD, et al. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5(1):69.

  15. 15.

    Wu YL, Ye Q, Eytan DF, Liu L, Rosario BL, Hitchens TK, et al. Magnetic resonance imaging investigation of macrophages in acute cardiac allograft rejection after heart transplantation. Circ Cardiovasc Imaging. 2013;6(6):965–73.

  16. 16.

    Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H, et al. Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation. 2008;118(2):149–56.

  17. 17.

    Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc. 2008;130(9):2832–41.

  18. 18.

    Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28(7):363–70.

  19. 19.

    Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–34.

  20. 20.

    Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–53.

  21. 21.

    Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer. 2018;6(1):105.

  22. 22.

    Stoll G, Basse-Lusebrink T, Weise G, Jakob P. Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(4):438–47.

  23. 23.

    Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, et al. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology. 2013;2(2):e23034.

  24. 24.

    Kadayakkara DK, Beatty PL, Turner MS, Janjic JM, Ahrens ET, Finn OJ. Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas. 2010;39(4):510–5.

  25. 25.

    Balducci A, Helfer BM, Ahrens ET, O’Hanlon CF 3rd, Wesa AK. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J Inflamm (Lond). 2012;9(1):24.

  26. 26.

    Zhong J, Narsinh K, Morel PA, Xu H, Ahrens ET. In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system. PLoS One. 2015;10(10):e0140238.

  27. 27.

    Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–63.

  28. 28.

    Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013;26(7):860–71.

  29. 29.

    Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492–501.

  30. 30.

    Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Investig. 2012;92(4):636–45.

  31. 31.

    Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27(3):261–71.

Download references

Author information

Correspondence to Vijay S. Gorantla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Authors contributed equally and Jelena M. Janjic is co-corresponding author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janjic, J.M., Gorantla, V.S. Novel Nanoimaging Strategies for Noninvasive Graft Monitoring in Vascularized Composite Allotransplantation. Curr Transpl Rep 5, 369–372 (2018). https://doi.org/10.1007/s40472-018-0221-x

Download citation


  • Nanoimaging
  • Immunomodulation
  • Chronic rejection
  • Acute rejection
  • Monitoring
  • Perfluorocarbons
  • Nanoemulsions
  • Imaging
  • MRI
  • NIRF
  • PET