Advertisement

Immunosuppression for Lung Transplantation: Current and Future

  • Satish Chandrashekaran
  • Stacy A. Crow
  • Sadia Z. Shah
  • Chris J. Arendt
  • Cassie C. Kennedy
Thoracic Transplantation (J Kobashigawa, Section Editor)
  • 7 Downloads
Part of the following topical collections:
  1. Topical Collection on Thoracic Transplantation

Abstract

Purpose of the Review

The number of lung transplantations performed worldwide continues to increase. There is a growing need in these patients for more effective immunosuppressive medications with less toxicity.

Recent Findings

This review article summarizes the recent studies and developments in lung transplant immunosuppression. Novel immunosuppressive medications and strategies used in other solid organ transplantations are being trialed in lung transplantation. This includes the use of co-stimulation blockers like belatacept and mTOR inhibitors like everolimus. Calcineurin-sparing regimens have been described in an attempt to minimize nephrotoxicity. Assays to measure the bioactivity of immunosuppressive medications to determine the global immune competence, such as Immuknow assay and Gamma interferon response are gaining traction.

Summary

Immunosuppression in lung transplant is evolving with the development of newer drugs and promising strategies to optimize immunosuppression. Further studies with multicenter randomized trials are required to increase the strength of the evidence.

Keywords

Lung transplantation Immunosuppression Calcineurin-sparing regimens Global immune competence 

Abbreviations

mTOR

Mammalian target of rapamycin

ACR

Acute cellular rejection

Il-2R

Interleukin-2 receptor

CNI

Calcineurin Inhibitors

TAC

Tacrolimus

BOS

Bronchiolitis obliterans syndrome

AZA

Azathioprine

6MP

6-Mercaptopurine

MMF

Mycophenolate mofetil

MPA

Mycophenolic acid

SRL

Sirolimus

FKBP12

FK506 binding protein 12

BELA

Belatacept

CTLA4

Cytotoxic T-lymphocyte–associated antigen 4 (CTLA4)

TTP

Thrombotic thrombocytopenic purpura

PRES

Posterior reversible encephalopathy syndrome

ER

Extended-release

TTR

Time-in-therapeutic-range

CLAD

Chronic lung allograft disease

AKI

Acute kidney injury

GFR

Glomerular filtration rate

CMV

Cytomegalovirus

AMR

Antibody mediated rejection

BTZ

Bortezomib

DSA

Donor specific antibodies

CFZ

Carfilzomib

IVIG

Intravenous immunoglobulin

ECU

Eculizumab

IFN-Ɣ

Plasma interferon-gamma

ISHLT

the International Society for Heart and Lung Transplantation

Notes

Financial Support

CCK is supported by the Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN and the NHLBI grant K23 HL128859 from the National Institutes of Health. The manuscript’s contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major Importance

  1. 1.
    Hardy JD, Webb WR, Dalton ML, Walker GR. Lung homotransplantation in man. JAMA. 1963;186:1065–74.CrossRefPubMedGoogle Scholar
  2. 2.
    Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation Report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047–59.  https://doi.org/10.1016/j.healun.2017.07.016.CrossRefPubMedGoogle Scholar
  3. 3.
    Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transpl. 2008;22(5):603–8.  https://doi.org/10.1111/j.1399-0012.2008.00831.x.CrossRefGoogle Scholar
  4. 4.
    Penninga L, Møller CH, Penninga EI, Iversen M, Gluud C, Steinbrüchel DA. Antibody induction therapy for lung transplant recipients. Cochrane Database Syst Rev. 2013;11:CD008927.  https://doi.org/10.1002/14651858.CD008927.pub2.Google Scholar
  5. 5.
    Penninga L, Penninga EI, Møller CH, Iversen M, Steinbrüchel DA, Gluud C. Tacrolimus versus cyclosporin as primary immunosuppression for lung transplant recipients. Cochrane Database Syst Rev. 2013;5:CD008817.  https://doi.org/10.1002/14651858.CD008817.pub2.Google Scholar
  6. 6.
    Wiesner R, Rabkin J, Klintmalm G, McDiarmid S, Langnas A, Punch J, et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transpl. 2001;7(5):442–50.  https://doi.org/10.1053/jlts.2001.23356.CrossRefPubMedGoogle Scholar
  7. 7.
    Kobashigawa J, Miller L, Renlund D, Mentzer R, Alderman E, Bourge R, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation. 1998;66(4):507–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou O, Wisser W, et al. Comparison between mycophenolate mofetil- and azathioprine-based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18(5):432–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Wiesel M, Carl S. A placebo controlled study of mycophenolate mofetil used in combination with cyclosporine and corticosteroids for the prevention of acute rejection in renal allograft recipients: 1-year results. The European Mycophenolate Mofetil Cooperative Study Group. J Urol. 1998;159(1):28–33.CrossRefPubMedGoogle Scholar
  10. 10.
    McNeil K, Glanville AR, Wahlers T, Knoop C, Speich R, Mamelok RD, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81(7):998–1003.  https://doi.org/10.1097/01.tp.0000202755.33883.61.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwarz S, Jaksch P, Klepetko W, Hoetzenecker K. Immunosuppression after lung transplantation: the search for the holy grail continues. J Thorac Dis. 2017;9(6):1412–4.  https://doi.org/10.21037/jtd.2017.04.66.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Glanville AR, Aboyoun C, Klepetko W, Reichenspurner H, Treede H, Verschuuren EA, et al. Three-year results of an investigator-driven multicenter, international, randomized open-label de novo trial to prevent BOS after lung transplantation. J Heart Lung Transplant. 2015;34(1):16–25.  https://doi.org/10.1016/j.healun.2014.06.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Fine NM, Kushwaha SS. Recent advances in mammalian target of rapamycin inhibitor use in heart and lung transplantation. Transplantation. 2016;100(12):2558–68.  https://doi.org/10.1097/TP.0000000000001432.CrossRefPubMedGoogle Scholar
  14. 14.
    King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.  https://doi.org/10.1097/01.TP.0000064083.02120.2C.CrossRefPubMedGoogle Scholar
  15. 15.
    Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.  https://doi.org/10.1111/j.1600-6143.2005.01134.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87.  https://doi.org/10.1164/rccm.201005-0775OC.CrossRefPubMedGoogle Scholar
  17. 17.
    Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–81.  https://doi.org/10.1056/NEJMoa050085.CrossRefPubMedGoogle Scholar
  18. 18.
    Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10(3):535–46.  https://doi.org/10.1111/j.1600-6143.2009.03005.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Vincenti F, Larsen CP, Alberu J, Bresnahan B, Garcia VD, Kothari J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 2012;12(1):210–7.  https://doi.org/10.1111/j.1600-6143.2011.03785.x.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Iasella CJ, Winstead RJ, Moore CA, Johnson BA, Feinberg AT, Morrell MR, et al. Maintenance belatacept-based immunosuppression in lung transplantation recipients who failed calcineurin inhibitors. Transplantation. 2018;102(1):171–7.  https://doi.org/10.1097/TP.0000000000001873. This case series of 11 lung transplant recipients who were changed to belatacept-based immunosuppression. This study demonstrated resonable results in this cohort of patients who did not tolerate CNI or who failed CNI. CrossRefPubMedGoogle Scholar
  21. 21.
    Timofte I, Terrin M, Barr E, Sanchez P, Kim J, Reed R, et al. Belatacept for renal rescue in lung transplant patients. Transpl Int. 2016;29(4):453–63.  https://doi.org/10.1111/tri.12731.CrossRefPubMedGoogle Scholar
  22. 22.
    Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83(3):444–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med. 2006;354(2):141–50.  https://doi.org/10.1056/NEJMoa043204.CrossRefPubMedGoogle Scholar
  24. 24.
    Groves S, Galazka M, Johnson B, Corcoran T, Verceles A, Britt E, et al. Inhaled cyclosporine and pulmonary function in lung transplant recipients. J Aerosol Med Pulm Drug Deliv. 2010;23(1):31–9.  https://doi.org/10.1089/jamp.2009.0748.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Purev E, Gormley N, Ramos C, Reger R, Tian X, Cho E et al. Inhaled cyclosporine solution for the treatment of bronchiolitis obliterans following hematopoietic stem cell transplantation (HSCT) or lung transplantation. Biol Blood Marrow Transplant 2015. p. S347–S8.Google Scholar
  26. 26.
    Patel N, et al. Overview of extended release tacolimus in solid organ transplantation. World J Transplant. 2016;6:144–54.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ho E, et al. Once-daily extended release versus twice-daily standard release tacrolimus in kidney transplant recipients: a systematic review. Transplantation. 2013;95(9):1120–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Cea M. Increasing tacrolimus time-in-therapeutic range is associated with reduced chronic lung allograft dysfunction. J Heart Lung Transplant. 2017;S411Google Scholar
  29. 29.
    Méndez A, Berastegui C, López-Meseguer M, Monforte V, Bravo C, Blanco A, et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. Transplantation. 2014;97(3):358–62.  https://doi.org/10.1097/01.TP.0000435699.69266.66.PubMedGoogle Scholar
  30. 30.
    Soto GAC, Ruiz-Antorán B, Laporta R, Sancho A, Lázaro MT, Herrera CP, et al. Dose increase needed in most cystic fibrosis lung transplantation patients when changing from twice- to once-daily tacrolimus oral administration. Eur J Clin Pharmacol. 2015;71(6):715–22.  https://doi.org/10.1007/s00228-015-1859-2.CrossRefPubMedGoogle Scholar
  31. 31.
    Ross DJ. Monthly basiliximab treatment improves chronic renal dysfunction with allograft stability after lung transplantation. J Heart Lung Transplant; 2017. p. S411.Google Scholar
  32. 32.
    Högerle BA, Kohli N, Habibi-Parker K, Lyster H, Reed A, Carby M, et al. Challenging immunosuppression treatment in lung transplant recipients with kidney failure. Transpl Immunol. 2016;35:18–22.  https://doi.org/10.1016/j.trim.2016.02.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Peddi VR, Wiseman A, Chavin K, Slakey D. Review of combination therapy with mTOR inhibitors and tacrolimus minimization after transplantation. Transplant Rev (Orlando). 2013;27(4):97–107.  https://doi.org/10.1016/j.trre.2013.06.001.CrossRefGoogle Scholar
  34. 34.
    •• Strueber M, Warnecke G, Fuge J, Simon AR, Zhang R, Welte T, et al. Everolimus versus mycophenolate Mofetil De Novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant. 2016;16(11):3171–80.  https://doi.org/10.1111/ajt.13835. This single center, prospective, randomized study in lung tranplant recipients demonstrated potential benefit of early initiation of everolimus based immunosuppression regimens. CrossRefPubMedGoogle Scholar
  35. 35.
    Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35(4):397–406.  https://doi.org/10.1016/j.healun.2016.01.1223.CrossRefPubMedGoogle Scholar
  36. 36.
    Kulkarni HS, Bemiss BC, Hachem RR. Antibody-mediated rejection in lung transplantation. Curr Transplant Rep. 2015;2(4):316–23.  https://doi.org/10.1007/s40472-015-0074-5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Witt CA, Gaut JP, Yusen RD, Byers DE, Iuppa JA, Bennett Bain K, et al. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2013;32(10):1034–40.  https://doi.org/10.1016/j.healun.2013.07.004.CrossRefPubMedGoogle Scholar
  38. 38.
    Snyder LD, Gray AL, Reynolds JM, Arepally GM, Bedoya A, Hartwig MG, et al. Antibody desensitization therapy in highly sensitized lung transplant candidates. Am J Transplant. 2014;14(4):849–56.  https://doi.org/10.1111/ajt.12636.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hayes D, Nicholson KL, Baker PB. Bortezomib for antibody-mediated rejection in a young lung transplant recipient. Pediatr Transplant. 2016;20(1):178–9.  https://doi.org/10.1111/petr.12651.CrossRefPubMedGoogle Scholar
  40. 40.
    Ensor CR, Yousem SA, Marrari M, Morrell MR, Mangiola M, Pilewski JM, et al. Proteasome inhibitor carfilzomib-based therapy for antibody-mediated rejection of the pulmonary allograft: use and short-term findings. Am J Transplant. 2017;17(5):1380–8.  https://doi.org/10.1111/ajt.14222.CrossRefPubMedGoogle Scholar
  41. 41.
    Dawson KL, Parulekar A, Seethamraju H. Treatment of hyperacute antibody-mediated lung allograft rejection with eculizumab. J Heart Lung Transplant. 2012;31(12):1325–6.  https://doi.org/10.1016/j.healun.2012.09.016.CrossRefPubMedGoogle Scholar
  42. 42.
    Burckart GJ, Hutchinson IV, Zeevi A. Pharmacogenomics and lung transplantation: clinical implications. Pharmacogenomics J. 2006;6(5):301–10.  https://doi.org/10.1038/sj.tpj.6500376.CrossRefPubMedGoogle Scholar
  43. 43.
    Yousem SA, Sartori D, Sonmez-Alpan E. Multidrug resistance in lung allograft recipients: possible correlation with the development of acute and chronic rejection. J Heart Lung Transplant. 1993;12(1 Pt 1):20–6.PubMedGoogle Scholar
  44. 44.
    Keshavjee S, Trulock E, Doyle R, Davis R, Golden J, McCurry K et al. Immunoregulatory influences on peripheral blood gene expression in lung transplant patients: the lung allograft rejection gene expression observational (Largo) study. J Heart Lung Transplant 2006. p. S78.Google Scholar
  45. 45.
    Zeevi A, Lunz J. Cylex ImmuKnow cell function assay. Methods Mol Biol. 2013;1034:343–51.  https://doi.org/10.1007/978-1-62703-493-7_21.CrossRefPubMedGoogle Scholar
  46. 46.
    Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation. 2006;82(5):663–8.  https://doi.org/10.1097/01.tp.0000234837.02126.70.CrossRefPubMedGoogle Scholar
  47. 47.
    Husain S, Raza K, Pilewski JM, Zaldonis D, Crespo M, Toyoda Y, et al. Experience with immune monitoring in lung transplant recipients: correlation of low immune function with infection. Transplantation. 2009;87(12):1852–7.  https://doi.org/10.1097/TP.0b013e3181a75ad2.CrossRefPubMedGoogle Scholar
  48. 48.
    Piloni D, Magni S, Oggionni T, Benazzo A, Stella G, Scudeller L, et al. Clinical utility of CD4+ function assessment (ViraCor-IBT ImmuKnow test) in lung recipients. Transpl Immunol. 2016;37:35–9.  https://doi.org/10.1016/j.trim.2016.04.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Shino MY, Weigt SS, Saggar R, Elashoff D, Derhovanessian A, Gregson AL, et al. Usefulness of immune monitoring in lung transplantation using adenosine triphosphate production in activated lymphocytes. J Heart Lung Transplant. 2012;31(9):996–1002.  https://doi.org/10.1016/j.healun.2012.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    •• Mian M, Natori Y, Ferreira V, Selzner N, Husain S, Singer L, et al. Evaluation of a novel global immunity assay to predict infection in organ transplant recipients. Clin Infect Dis. 2017;  https://doi.org/10.1093/cid/cix1008. This article describes a novel assay of plasma gamma interferon in immunosuppressed lung transplant recipients. A low level of gamma interfoeron was very predicitve of infection.
  51. 51.
    Webber AB, Vincenti F. An update on Calcineurin inhibitor-free regimens: the need persists, but the landscape has changed. Transplantation. 2016;100(4):836–43.  https://doi.org/10.1097/TP.0000000000000872.CrossRefPubMedGoogle Scholar
  52. 52.
    Banga A, Mohanka M, Mullins J, Bollineni S, Kaza V, Torres F, et al. Association of pretransplant kidney function with outcomes after lung transplantation. Clin Transpl. 2017;31(5)  https://doi.org/10.1111/ctr.12932.
  53. 53.
    Wigfield CH, Buie V, Onsager D. “Age” in lung transplantation: factors related to outcomes and other considerations. Curr Pulmonol Rep. 2016;5:152–8.  https://doi.org/10.1007/s13665-016-0151-y.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Grimm JC, Lui C, Kilic A, Valero V, Sciortino CM, Whitman GJ, et al. A risk score to predict acute renal failure in adult patients after lung transplantation. Ann Thorac Surg. 2015;99(1):251–7.  https://doi.org/10.1016/j.athoracsur.2014.07.073.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Satish Chandrashekaran
    • 1
  • Stacy A. Crow
    • 2
    • 3
  • Sadia Z. Shah
    • 4
  • Chris J. Arendt
    • 2
    • 3
  • Cassie C. Kennedy
    • 3
    • 5
  1. 1.Division of Pulmonary, Critical Care and Sleep Medicine, Lung Transplantation ProgramUniversity of FloridaGainesvilleUSA
  2. 2.Pharmacy ServicesMayo ClinicRochesterUSA
  3. 3.William J. von Liebig Center for Transplantation and Clinical RegenerationMayo ClinicRochesterUSA
  4. 4.Division of Pulmonary and Critical Care MedicineMayo ClinicScottsdaleUSA
  5. 5.Division of Pulmonary and Critical Care MedicineMayo ClinicRochesterUSA

Personalised recommendations