Advertisement

DNA Methylation Signatures as Biomarkers of Prior Environmental Exposures

  • Christine Ladd-AcostaEmail author
  • M. Daniele FallinEmail author
Genetic Epidemiology (C Amos, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetic Epidemiology

Abstract

Purpose of Review

This review demonstrates the growing body of evidence connecting DNA methylation to prior exposure. It highlights the potential to use DNA methylation patterns as a feasible, stable, and accurate biomarker of past exposure, opening new opportunities for environmental and gene-environment interaction studies among existing banked samples.

Recent Findings

We present the evidence for association between past exposure, including prenatal exposures, and DNA methylation measured at a later time in the life course. We demonstrate the potential utility of DNA methylation-based biomarkers of past exposure using results from multiple studies of smoking as an example. Multiple studies show the ability to accurately predict prenatal smoking exposure based on DNA methylation measured at birth, in childhood, and even adulthood. Separate sets of DNA methylation loci have been used to predict past personal smoking exposure (postnatal) as well. Further, it appears that these two types of exposures, prenatal and previous personal exposure, can be isolated from each other. There is also a suggestion that quantitative methylation scores may be useful for estimating dose. We highlight the remaining needs for rigor in methylation biomarker development including analytic challenges as well as the need for development across multiple developmental windows, multiple tissue types, and multiple ancestries.

Summary

If fully developed, DNA methylation-based biomarkers can dramatically shift our ability to carry out environmental and genetic-environmental epidemiology using existing biobanks, opening up unprecedented opportunities for environmental health.

Keywords

DNA methylation Biomarker Past exposure Environmental exposure Prenatal smoking EWAS Epigenomic 

Notes

Compliance with Ethical Standards

Conflict of Interest

M. Daniele Fallin and Christine Ladd-Acosta each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. Classification of common human diseases derived from shared genetic and environmental determinants. Nat Genet. 2017;49(9):1319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Samet JM. Tobacco smoking: the leading cause of preventable disease worldwide. Thorac Surg Clin. 2013;23(2):103–12.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    NTP monograph on health effects of low-level lead. NTP Monogr, 2012(1):xiii, xv-148.Google Scholar
  4. 4.
    Wang G, Divall S, Radovick S, Paige D, Ning Y, Chen Z, et al. Preterm birth and random plasma insulin levels at birth and in early childhood. JAMA. 2014;311(6):587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Newschaffer CJ, Croen LA, Fallin MD, Hertz-Picciotto I, Nguyen DV, Lee NL, et al. Infant siblings and the investigation of autism risk factors. J Neurodev Disord. 2012;4(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Oken E, Baccarelli AA, Gold DR, Kleinman KP, Litonjua AA, de Meo D, et al. Cohort profile: project viva. Int J Epidemiol. 2015;44(1):37–48.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Jaddoe VW, et al. The generation R study: design and cohort profile. Eur J Epidemiol. 2006;21(6):475–84.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). Int J Epidemiol. 2016;45(2):382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the 'children of the 90s'--the index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol. 2013;42(1):111–27.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, et al. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ Res. 2018;161:588–98.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Andra SS, Austin C, Arora M. Tooth matrix analysis for biomonitoring of organic chemical exposure: current status, challenges, and opportunities. Environ Res. 2015;142:387–406.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cross-Disorder Group of the Psychiatric Genomics, C, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94.CrossRefGoogle Scholar
  14. 14.
    Benowitz NL. Biomarkers of environmental tobacco smoke exposure. Environ Health Perspect. 1999;107(Suppl 2):349–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev. 1996;18(2):188–204.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lee DH, Jacobs DR Jr. Methodological issues in human studies of endocrine disrupting chemicals. Rev Endocr Metab Disord. 2015;16(4):289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Christensen JM. Human exposure to toxic metals: factors influencing interpretation of biomonitoring results. Sci Total Environ. 1995;166:89–135.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bakulski KM, Fallin MD. Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen. 2014;55(3):171–83.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Burris HH, Baccarelli AA. Environmental epigenetics: from novelty to scientific discipline. J Appl Toxicol. 2014;34(2):113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131(10):1565–89.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Suter M, Ma J, Harris AS, Patterson L, Brown KA, Shope C, et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics. 2011;6(11):1284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    • Joubert BR, et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet. 2016;98(4):680–96 Largest epigenome-wide association study for prenatal smoking exposure to date, consisting of 6,685 samples from 13 studies. Identified thousands of loci showing DNA methylation changes in cord blood, at birth, related to in utero exposure to smoking.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hannon E, et al. Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med. 2018;10(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Novakovic B, Ryan J, Pereira N, Boughton B, Craig JM, Saffery R. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics. 2014;9(3):377–86.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    • Breton CV, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One. 2014;9(6):e99716 Provides evidence that DNA methylation patterns present in child DNA reflect prenatal exposure to smoking.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    •• Ladd-Acosta C, et al. Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. Environ Res. 2016;144(Pt A):139–48 Reported prenatal smoking associated methylation patterns, originally detected in an independent birth sample, are also present in childhood. They were the first to report prenatal exposure to smoking can be accurately (AUC=0.87) predicted using DNA methylation patterns in the blood of 5 year old children.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    • Richmond RC, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17 Repeated biosampling in children, from birth to age 17, enabled examination of long-term persistence of prenatal smoking associated methylation changes in the same individuals over time. Significant differences in methylation were observed at multiple loci even after adjusting for postnatal household and personal exposures.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    • Lee KW, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2015;123(2):193–9 Shows DNA methylation changes related to prenatal exposure can be detected in adolescence. Also replicated findings in an independent sample at birth and ages 7 and 17.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet. 2012;21(13):3073–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9(5):436–47.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee MK, Hong Y, Kim SY, London SJ, Kim WJ. DNA methylation and smoking in Korean adults: epigenome-wide association study. Clin Epigenetics. 2016;8:103.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Küpers LK, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu C, Marioni RE, Hedman ÅK, Pfeiffer L, Tsai PC, Reynolds LM, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. 2018;23(2):422–33.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Richmond RC, Sharp GC, Herbert G, Atkinson C, Taylor C, Bhattacharya S, et al. The long-term impact of folic acid in pregnancy on offspring DNA methylation: follow-up of the Aberdeen folic acid supplementation trial (AFAST). Int J Epidemiol. 2018;47:928–37.PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4(11):e7845.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritsky E, Baker MS, et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 2015;16:118.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010;6(12):e1001252.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 2017;9:16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics. 2017;12(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    van Dijk SJ, Zhou J, Peters TJ, Buckley M, Sutcliffe B, Oytam Y, et al. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics. 2016;8:114.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jacobsen SC, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Finer S, Iqbal MS, Lowe R, Ogunkolade BW, Pervin S, Mathews C, et al. Is famine exposure during developmental life in rural Bangladesh associated with a metabolic and epigenetic signature in young adulthood? A historical cohort study. BMJ Open. 2016;6(11):e011768.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Parent J, Parade SH, Laumann LE, Ridout KK, Yang BZ, Marsit CJ, et al. Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: the role of child maltreatment. Dev Psychopathol. 2017;29(5):1635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2017;125(1):104–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118(6):790–5.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cardenas A, Rifas-Shiman SL, Godderis L, Duca RC, Navas-Acien A, Litonjua AA, et al. Prenatal exposure to mercury: associations with global DNA methylation and Hydroxymethylation in cord blood and in childhood. Environ Health Perspect. 2017;125(8):087022.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet. 2017;26(20):4067–85.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kazmi N, Gaunt TR, Relton C, Micali N. Maternal eating disorders affect offspring cord blood DNA methylation: a prospective study. Clin Epigenetics. 2017;9:120.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    •• Richmond RC, et al. DNA methylation as a marker for prenatal smoke exposure in adults. Int J Epidemiol. 2018; Showed methylation scores obtained from DNA collected at age 30, can predict prenatal exposure to smoking with 72% accuracy. Also showed loci associated with postnatal personal smoking are not good predictors of prenatal smoking exposure (AUC=0.57), suggesting methylation patterns differ by exposure window.Google Scholar
  58. 58.
    Leggett RW. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993;101(7):598–616.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Simpkin AJ, Suderman M, Howe LD. Epigenetic clocks for gestational age: statistical and study design considerations. Clin Epigenetics. 2017;9:100.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Knight AK, Craig JM, Theda C, Bækvad-Hansen M, Bybjerg-Grauholm J, Hansen CS, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17(1):206.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bohlin J, Håberg SE, Magnus P, Reese SE, Gjessing HK, Magnus MC, et al. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016;17(1):207.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, et al. Age-associated DNA methylation in pediatric populations. Genome Res. 2012;22(4):623–32.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MRP, Deary IJ, et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging (Albany NY). 2016;8(2):394–401.CrossRefGoogle Scholar
  64. 64.
    Weidner CI, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell. 2012;11(6):1132–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic predictor of age. PLoS One. 2011;6(6):e14821.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Knight AK, Conneely KN, Smith AK. Gestational age predicted by DNA methylation: potential clinical and research utility. Epigenomics. 2017.Google Scholar
  71. 71.
    Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A. 2014;111(43):15538–43.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844–65.CrossRefGoogle Scholar
  74. 74.
    Bossuyt PM, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Phan JH, Kothari S, Wang MD. omniClassifier: a desktop grid computing system for big data prediction modeling. ACM BCB. 2014;2014:514–23.PubMedPubMedCentralGoogle Scholar
  76. 76.
    •• Zhuang J, Widschwendter M, Teschendorff AE. A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC Bioinformatics. 2012;13:59 Developed a methylation score in cord blood at birth that reflects prenatal exposure to sustained smoking, The score was able to predict exposure status in an independent birth sample with 90% accuracy.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Reese SE, Zhao S, Wu MC, Joubert BR, Parr CL, Håberg SE, et al. DNA methylation score as a biomarker in newborns for sustained maternal smoking during pregnancy. Environ Health Perspect. 2017;125(4):760–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    • Shenker NS, et al. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology. 2013;24(5):712–6 First to show generalized linear model, using methylation levels at 4 CpG sites, can accurately predict previous personal smoking history among adults.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Xu J, Thakkar S, Gong B, Tong W. The FDA's experience with emerging genomics technologies-past, present, and future. AAPS J. 2016;18(4):814–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto I, et al. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun. 2017;8(1):1011.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, et al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics. 2014;15:145.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ren JC, Wu YX, Wu Z, Zhang GH, Wang H, Liu H, et al. MTHFR gene polymorphism is associated with DNA Hypomethylation and genetic damage among benzene-exposed Workers in Southeast China. J Occup Environ Med. 2018;60(4):e188–92.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Zhang GH, Lu Y, Ji BQ, Ren JC, Sun P, Ding S, et al. Do mutations in DNMT3A/3B affect global DNA hypomethylation among benzene-exposed workers in Southeast China?: effects of mutations in DNMT3A/3B on global DNA hypomethylation. Environ Mol Mutagen. 2017;58(9):678–87.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Declerck K, Remy S, Wohlfahrt-Veje C, Main KM, van Camp G, Schoeters G, et al. Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA methylation in genes associated with cardio-metabolic disease risk-an exploratory study. Clin Epigenetics. 2017;9:35.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Aarabi M, San Gabriel MC, Chan D, Behan NA, Caron M, Pastinen T, et al. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism. Hum Mol Genet. 2015;24(22):6301–13.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sipahi L, Wildman DE, Aiello AE, Koenen KC, Galea S, Abbas A, et al. Longitudinal epigenetic variation of DNA methyltransferase genes is associated with vulnerability to post-traumatic stress disorder. Psychol Med. 2014;44(15):3165–79.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Wendy Klag Center for Autism and Developmental DisabilitiesJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  3. 3.Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations