Skip to main content

Advertisement

Log in

Big Data in Cardiovascular Disease

  • Cardiovascular Disease (R Foraker, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular diseases exert a wide-reaching epidemiological impact as the number one cause of death worldwide. Emerging technologies such as big data and artificial intelligence (AI) are poised to significantly change the field of cardiology. However, their applications are still emerging. We aimed to define the role of big data and AI in cardiovascular disease with a focus on research.

Recent Findings

There are zettabyte levels (1021 bytes) of big data in the US that can be directed towards healthcare research. There are applications of big data analytics already being put to use with genomics, heart failure readmissions, echocardiography, and many other areas within cardiology.

Summary

We profile in this paper an extensive listing of various datasets used throughout the globe to study big data. Within cardiology, there is tremendous potential for the application of big data analytics in personalized patient care; however, they still require validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. U.S. Department of Health & Human Services. Leading causes of death: 2016. Available from: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed 12 Feb 2019.

  2. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    Article  CAS  PubMed  Google Scholar 

  3. Dilsizian ME, Siegel EL. Machine meets biology: a primer on artificial intelligence in cardiology and cardiac imaging. Curr Cardiol Rep. 2018;20(12):139.

    Article  PubMed  Google Scholar 

  4. Dunbar SB, Khavjou OA, Bakas T, Hunt G, Kirch RA, Leib AR, et al. Projected costs of informal caregiving for cardiovascular disease: 2015 to 2035: a policy statement from the American Heart Association. Circulation. 2018;137(19):e558–e77.

    Article  PubMed  Google Scholar 

  5. •• Krittanawong C, Johnson KW, Hershman SG, Tang WHW. Big data, artificial intelligence, and cardiovascular precision medicine. Expert Review of Precision Medicine and Drug Development. 2018;3(5):305-17.Important article highlighting big data technologies.

  6. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.

    Article  PubMed  Google Scholar 

  7. D'Agostino RB Sr, Pencina MJ, Massaro JM, Coady S. Cardiovascular disease risk assessment: insights from Framingham. Glob Heart. 2013;8(1):11–23.

    Article  PubMed  Google Scholar 

  8. •• Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657–64. Important article highlighting big data technologies.

    Article  PubMed  Google Scholar 

  9. •• Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. 2016;13(6):350–9. Important article highlighting big data technologies.

    Article  CAS  PubMed  Google Scholar 

  10. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diebold FX. On the origin(s) and development of the term ‘Big Data’ 2012. Available from: https://doi.org/10.2139/ssrn.2152421. Accessed 15 Apr 2019.

  12. Kim J. Big data, health informatics, and the future of cardiovascular medicine. J Am Coll Cardiol. 2017;69(7):899–902.

    Article  PubMed  Google Scholar 

  13. Bellazzi R. Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform. 2014;9:8–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Capgemini. The deciding factor: big data & decision making 2013 [Available from: https://www.capgemini.com/wp-content/uploads/2017/07/The_Deciding_Factor__Big_Data___Decision_Making.pdf]. Accessed 12 Feb 2019.

  15. Simply Ted. How to visualize data 2005 [Available from: http://simplyted.blogspot.com/2005/12/how-to-visualize-data.html]. Accessed 16 Apr 2019.

  16. Scruggs SB, Watson K, Su AI, Hermjakob H, Yates JR 3rd, Lindsey ML, et al. Harnessing the heart of big data. Circ Res. 2015;116(7):1115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. American College of Cardiology. NCDR: American College of Cardiology; [2018. Available from: https://cvquality.acc.org/NCDR-Home]. Accessed 12 Feb 2019.

  18. Hemingway H, Asselbergs FW, Danesh J, Dobson R, Maniadakis N, Maggioni A, et al. Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. Eur Heart J. 2018;39(16):1481–95.

    Article  PubMed  Google Scholar 

  19. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311(24):2479–80.

    CAS  PubMed  Google Scholar 

  20. Anker S, Asselbergs FW, Brobert G, Vardas P, Grobbee DE, Cronin M. Big data in cardiovascular disease. Eur Heart J. 2017;38(24):1863–5.

    Article  PubMed  Google Scholar 

  21. Glicksberg BS, Johnson KW, Dudley JT. The next generation of precision medicine: observational studies, electronic health records, biobanks and continuous monitoring. Hum Mol Genet. 2018;27(R1):R56–62.

    Article  CAS  PubMed  Google Scholar 

  22. Lima FV, Fahed AC. Harnessing the power of big data in cardiovascular disease 2018 [Available from: https://www.acc.org/latest-in-cardiology/articles/2018/04/17/12/42/harnessing-the-power-of-big-data-in-cardiovascular-disease]. Accessed February 13, 2019.

  23. American College of Cardiology. NCDR CathPCI Registry [Available from: https://cvquality.acc.org/NCDR-Home/registries/hospital-registries/cathpci-registry]. Accessed 12 Feb 2019.

  24. American Society of Nuclear Cardiology and American Society of Echocardiography. ImageGuide Registry [Available from: http://imageguideregistry.org/]. Accessed 12 Feb 2019.

  25. American Heart Association. AHA Approved Data Repositories [Available from: https://professional.heart.org/professional/ResearchPrograms/UCM_461443_AHA-Approved-Data-Repositories.jsp]. Accessed 12 Feb 2019.

  26. American Heart Association. Open Science Policy Statements for AHA Funded Research 2018 [Available from: https://professional.heart.org/professional/ResearchPrograms/AwardsPolicies/UCM_461225_Open-Science-Policy-Statements-for-AHA-Funded-Research.jsp]. Accessed 12 Feb 2019.

  27. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, et al. Million veteran program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214–23.

    Article  PubMed  Google Scholar 

  28. Guo X, Vittinghoff E, Olgin JE, Marcus GM, Pletcher MJ. Volunteer participation in the health eHeart study: a comparison with the US population. Sci Rep. 2017;7(1):1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stanford Medicine. Apple Heart Study 2019. [Available from: https://med.stanford.edu/appleheartstudy.html]. Accessed 12 Feb 2019.

  30. McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, et al. Feasibility of obtaining measures of lifestyle from a smartphone app: the MyHeart counts cardiovascular health study. JAMA Cardiol. 2017;2(1):67–76.

    Article  PubMed  Google Scholar 

  31. Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff (Millwood). 2014;33(7):1163–70.

    Article  Google Scholar 

  32. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014;33(7):1123–31.

    Article  Google Scholar 

  33. •• Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64. Important article highlighting big data technologies.

    Article  PubMed  Google Scholar 

  34. •• Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60. Important article highlighting big data technologies.

    Article  CAS  PubMed  Google Scholar 

  35. •• Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. Important article highlighting big data technologies.

    Article  CAS  PubMed  Google Scholar 

  36. •• Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79. Important article highlighting big data technologies.

    Article  PubMed  Google Scholar 

  37. Towards Data Science. Machine Learning 101, Supervised, Unsupervised, Reinforcement, & Beyond in 2017 [Available from: https://towardsdatascience.com/machine-learning-101-supervised-unsupervised-reinforcement-beyond-f18e722069bc]. Accessed 16 Apr 2019.

  38. Brownlee J. Supervised and unsupervised machine learning algorithms 2016. Available from: https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/. Accessed 16 Apr 2019.

  39. Das S. Deep learning 101 2019. Available from: https://towardsdatascience.com/deep-learning-101-a53e3caf31b1. Accessed 16 Apr 2019.

  40. Costa CM, Silva IS, de Sousa RD, Hortegal RA, Regis CDM. The association between reconstructed phase space and artificial neural networks for vectorcardiographic recognition of myocardial infarction. J Electrocardiol. 2018;51(3):443–9.

    Article  PubMed  Google Scholar 

  41. McCabe JM, Armstrong EJ, Ku I, Kulkarni A, Hoffmayer KS, Bhave PD, et al. Physician accuracy in interpreting potential ST-segment elevation myocardial infarction electrocardiograms. J Am Heart Assoc. 2013;2(5):e000268.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fornell D. Applications for artificial intelligence in cardiovascular imaging. 2019 [Available from: https://www.dicardiology.com/article/applications-artificial-intelligence-cardiovascular-imaging]. Accessed 12 Feb 2019.

  43. Imran TF, Posner D, Honerlaw J, Vassy JL, Song RJ, Ho YL, et al. A phenotyping algorithm to identify acute ischemic stroke accurately from a national biobank: the Million Veteran Program. Clin Epidemiol. 2018;10:1509–21.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70–82.

    Article  PubMed  Google Scholar 

  45. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.

    Article  PubMed  Google Scholar 

  46. Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail. 2019;21(1):74–85.

    Article  PubMed  Google Scholar 

  47. Bayati M, Braverman M, Gillam M, Mack KM, Ruiz G, Smith MS, et al. Data-driven decisions for reducing readmissions for heart failure: general methodology and case study. PLoS One. 2014;9(10):e109264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A, Li SX, et al. Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes. 2016;9(6):629–40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. •• Gandhi S, Mosleh W, Shen J, Chow CM. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world. Echocardiography. 2018;35(9):1402–18. Important article highlighting big data technologies.

    Article  PubMed  Google Scholar 

  50. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. J Am Coll Cardiol Img. 2012;5(3):239–51.

    Article  Google Scholar 

  51. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6).

  52. Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc. 2014;21(6):957–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Denaxas SC, George J, Herrett E, Shah AD, Kalra D, Hingorani AD, et al. Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER). Int J Epidemiol. 2012;41(6):1625–38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tu JV, Chu A, Donovan LR, Ko DT, Booth GL, Tu K, et al. The Cardiovascular Health in Ambulatory Care Research Team (CANHEART): using big data to measure and improve cardiovascular health and healthcare services. Circ Cardiovasc Qual Outcomes. 2015;8(2):204–12.

    Article  PubMed  Google Scholar 

  55. Thompson SG, Willeit P. UK Biobank comes of age. Lancet. 2015;386(9993):509–10.

    Article  PubMed  Google Scholar 

  56. Weintraub WS, Fahed AC, Rumsfeld JS. Translational medicine in the era of big data and machine learning. Circ Res. 2018;123(11):1202–4.

    Article  CAS  PubMed  Google Scholar 

  57. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weng LC, Preis SR, Hulme OL, Larson MG, Choi SH, Wang B, et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation. 2018;137(10):1027–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio V. Lima.

Ethics declarations

Conflict of Interest

Fabio V. Lima and Regina Druz each declare no potential conflicts of interest. Raymond Russell reports personal fees from ResTORbio, outside the submitted work. His spouse is employed by ResTORbio and also receives stock options. The company is developing novel drugs to treat pulmonary infections as well as Parkinson’s disease and therefore not related to the content of this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.V., Russell, R. & Druz, R. Big Data in Cardiovascular Disease. Curr Epidemiol Rep 6, 329–346 (2019). https://doi.org/10.1007/s40471-019-00209-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-019-00209-1

Keywords

Navigation