Advertisement

Current Epidemiology Reports

, Volume 5, Issue 4, pp 418–431 | Cite as

Use of Age-Period-Cohort Analysis in Cancer Epidemiology Research

  • Caitlin C. Murphy
  • Yang Claire YangEmail author
Social Epidemiology (A Aiello, Section Editor)
  • 43 Downloads
Part of the following topical collections:
  1. Topical Collection on Social Epidemiology

Abstract

Purpose of Review

Age-period-cohort (APC) models simultaneously estimate the effects of age—biological process of aging; time period—secular trends that occur in all ages simultaneously; and birth cohort—variation among those born around the same year or from one generation to the next. APC models inform understanding of cancer etiology, natural history, and disparities. We reviewed findings from recent studies (published 2008–2018) examining age, period, and cohort effects and summarized trends in age-standardized rates and age-specific rates by birth cohort. We also described prevalence of cancer risk factors by time period and birth cohort, including obesity, current smoking, human papilloma virus (HPV), and hepatitis C virus (HCV).

Recent Findings

Studies (n = 29) used a variety of descriptive analyses and statistical models to document age, period, and cohort trends in cancer-related outcomes. Cohort effects predominated, particularly in breast, bladder, and colorectal cancers, whereas period effects were more variable. No effect of time period was observed in studies of breast, bladder, and oral cavity cancers. Age-specific prevalence of obesity, current smoking, HPV, and HCV also varied by birth cohort, which generally paralleled cancer incidence and mortality rates.

Summary

We observed strong cohort effects across multiple cancer types and less consistent evidence supporting the effect of time period. Birth cohort effects point to exposures early in life—or accumulated across the life course—that increase risk of cancer. Birth cohort effects also illustrate the importance of reconsidering the timing and duration of well-established risk factors to identify periods of exposure conferring the greatest risk.

Keywords

Incidence Time factors SEER program Risk factors Age factors 

Notes

Grant Support

This work was supported by the National Cancer Institute (P30CA142543) and National Center for Advancing Translational Sciences (KL2TR001103 to Dr. Murphy) at the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

Caitlin C. Murphy and Yang Claire Yang each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Yang Y, Land KC. Age-period-cohort analysis: new models, methods, and empirical applications. New York, Publisher Chapman and Hall/CRC, eBook published 19 April 2016. Explores statistical models, methods, and research designs that can be used in age-period-cohort analysis, as well as new methods that tackle the “identification problem.”Compares new and existing models and methods and provides useful guidelines on how to conduct age-period-cohort analysis. Software and programs to estimate the models are available on the book’s web page: http://yangclaireyang.web.unc.edu/age-period-cohort-analysis-new-models-methods-and-empirical-applications/
  2. 2.
    Jemal A, Travis WD, Tarone RE, Travis L, Devesa SS. Lung cancer rates convergence in young men and women in the United States: analysis by birth cohort and histologic type. Int J Cancer. 2003;105(1):101–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Bray FI, Weiderpass E. Lung cancer mortality trends in 36 European countries: secular trends and birth cohort patterns by sex and region 1970–2007. Int J Cancer. 2010;126(6):1454–66.PubMedGoogle Scholar
  4. 4.
    Carstensen B. Age–period–cohort models for the Lexis diagram. Stat Med. 2007;26(15):3018–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Brennan P, Bogillot O, Greiser E, Chang-Claude J, Wahrendorf J, Cordier S, et al. The contribution of cigarette smoking to bladder cancer in women (pooled European data). Cancer Causes Control. 2001;12(5):411–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Denniston MM, Jiles RB, Drobeniuc J, Klevens RM, Ward JW, McQuillan GM, et al. Chronic hepatitis C virus infection in the United States, national health and nutrition examination survey 2003 to 2010. Ann Intern Med. 2014;160(5):293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315(21):2292–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Parkin DM, Bray F. The burden of HPV-related cancers. Vaccine. 2006;24:S11–25.CrossRefGoogle Scholar
  9. 9.
    Jemal A, Miller KD, Ma J, Siegel RL, Fedewa SA, Islami F, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med. 2018;378(21):1999–2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris JE. Cigarette smoking among successive birth cohorts of men and women in the United States during 1900–1980. J Natl Cancer Inst. 1983;71(3):473–9.PubMedGoogle Scholar
  11. 11.•
    Fienberg SE, Mason WM. Specification and implementation of age, period and cohort models. In: Cohort analysis in social research. Springer; 1985:45–88. Provides overview of age-period-cohort models, with a focus on linear models. Google Scholar
  12. 12.
    Escobedo LG, Peddicord JP. Smoking prevalence in US birth cohorts: the influence of gender and education. Am J Public Health. 1996;86(2):231–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pocobelli G, Cook LS, Brant R, Lee SS. Hepatocellular carcinoma incidence trends in Canada: analysis by birth cohort and period of diagnosis. Liver Int. 2008;28(9):1272–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu G, Hariri S, Bradley H, Gottlieb SL, Leichliter JS, Markowitz LE. Trends and patterns of sexual behaviors among adolescents and adults aged 14 to 59 years, United States. Sex Transm Dis. 2015;42(1):20–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Y, Fu WJ, Land KC. 2. A methodological comparison of age-period-cohort models: the intrinsic estimator and conventional generalized linear models. Sociol Methodol. 2004;34(1):75–110.CrossRefGoogle Scholar
  16. 16.
    Yang Y, Schulhofer-Wohl S, Fu WJ, Land KC. The intrinsic estimator for age-period-cohort analysis: what it is and how to use it. Am J Sociol. 2008;113(6):1697–736.CrossRefGoogle Scholar
  17. 17.
    Lopez-Abente G, Ardanaz E, Torrella-Ramos A, Mateos A, Delgado-Sanz C, Chirlaque MD. Changes in colorectal cancer incidence and mortality trends in Spain. Ann Oncol. 2010;21(Suppl 3):iii76–82.PubMedGoogle Scholar
  18. 18.•
    Murphy CC, Yang YC, Shaheen NJ, Hofstetter WL, Sandler RS. An age-period-cohort analysis of obesity and incident esophageal adenocarcinoma among white males. Dis Esophagus. 2017;30(3):1–8 Uses hierarchical age-period-cohort model to estimate changes in incidence of esophageal adenocarcinoma among white men. Includes obesity as fixed-level covariates to test explanatory hypotheses about obesity as a risk factor that contributes to the observed trends. Google Scholar
  19. 19.
    Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15(1):36–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol. 2016;34(15):1787–94.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Clayton D, Schifflers E. Models for temporal variation in cancer rates. I: age–period and age–cohort models. Stat Med. 1987;6(4):449–67.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kupper LL, Janis JM, Karmous A, Greenberg BG. Statistical age-period-cohort analysis: a review and critique. J Chronic Dis. 1985;38(10):811–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Clayton D, Schifflers E. Models for temporal variation in cancer rates. II: age–period–cohort models. Stat Med. 1987;6(4):469–81.PubMedCrossRefGoogle Scholar
  24. 24.•
    Rosenberg PS, Check DP, Anderson WF. A web tool for age-period-cohort analysis of cancer incidence and mortality rates. Cancer Epidemiol Biomark Prev. 2014;23(11):2296–302 Publicly available web tool that allows researchers to upload a dataset and derive estimates for age, period, and cohort effects.Google Scholar
  25. 25.
    Gangnon RE, Sprague BL, Stout NK, Alagoz O, Weedon-Fekjaer H, Holford TR, et al. The contribution of mammography screening to breast cancer incidence trends in the United States: an updated age-period-cohort model. Cancer Epidemiol Biomarkers Prev. 2015;24(6):905–12.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Franco-Marina F, Lopez-Carrillo L, Keating NL, Arreola-Ornelas H, Marie Knaul F. Breast cancer age at diagnosis patterns in four Latin American populations: a comparison with north American countries. Cancer Epidemiol. 2015;39(6):831–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Viel JF, Rymzhanova R, Fournier E, Danzon A. Trends in invasive breast cancer incidence among French women not exposed to organized mammography screening: an age-period-cohort analysis. Cancer Epidemiol. 2011;35(6):521–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27(9):1485–91.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yan M, Ha J, Aguilar M, Bhuket T, Liu B, Gish RG, et al. Birth cohort-specific disparities in hepatocellular carcinoma stage at diagnosis, treatment, and long-term survival. J Hepatol. 2016;64(2):326–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38.PubMedCrossRefGoogle Scholar
  31. 31.
    El-Serag HB, Mason AC. Risk factors for the rising rates of primary liver cancer in the United States. Arch Intern Med. 2000;160(21):3227–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, et al. Colorectal cancer incidence patterns in the United States, 1974-2013. J Natl Cancer Inst. 2017;109(8).Google Scholar
  33. 33.
    van Steenbergen LN, Lemmens VE, Louwman MJ, Straathof JW, Coebergh JW. Increasing incidence and decreasing mortality of colorectal cancer due to marked cohort effects in southern Netherlands. Eur J Cancer Prev. 2009;18(2):145–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Jemal A, Ma J, Rosenberg PS, Siegel R, Anderson WF. Increasing lung cancer death rates among young women in southern and midwestern States. J Clin Oncol. 2012;30(22):2739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Andreassen BK, Aagnes B, Gislefoss R, Andreassen M, Wahlqvist R. Incidence and survival of urothelial carcinoma of the urinary bladder in Norway 1981-2014. BMC Cancer. 2016;16(1):799.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.•
    Yang Y, Xie L, Zheng J-L, Tan Y-T, Zhang W, Xiang Y-B. Incidence trends of urinary bladder and kidney cancers in urban Shanghai, 1973-2005. PLoS One. 2013;8(12):e82430 Used intrinsic estimator to estimate age, period, and cohort effects contributing to incidence of urinary bladder and kidney cancer. Intrinsic estimator offers an alternative approach to conventional age-period-cohort methods. Google Scholar
  37. 37.
    Pou SA, Osella AR, Diaz MP. Bladder cancer mortality trends and patterns in Cordoba, Argentina (1986-2006). Cancer Causes Control. 2011;22(3):407–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Brennan P, Bogillot O, Cordier S, Greiser E, Schill W, Vineis P, et al. Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int J Cancer. 2000;86(2):289–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26(4):612–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31(36):4550–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gilhodes J, Belot A, Bouvier AM, Remontet L, Delafosse P, Ligier K, et al. Incidence of major smoking-related cancers: trends among adults aged 20-44 in France from 1982 to 2012. Cancer Epidemiol. 2015;39(5):707–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Pytynia KB, Dahlstrom KR, Sturgis EM. Epidemiology of HPV-associated oropharyngeal cancer. Oral Oncol. 2014;50(5):380–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Turner CF, Danella RD, Rogers SM. Sexual behavior in the United States, 1930–1990. Sex Transm Dis. 1995;22(3):173–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson WF, Camargo MC, Fraumeni JF Jr, Correa P, Rosenberg PS, Rabkin CS. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA. 2010;303(17):1723–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2(1):28–37.Google Scholar
  46. 46.
    Grad YH, Lipsitch M, Aiello AE. Secular trends in Helicobacter pylori seroprevalence in adults in the United States: evidence for sustained race/ethnic disparities. Am J Epidemiol. 2011;175(1):54–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Roosendaal R, Kuipers EJ, Buitenwerf J, et al. Helicobacter pylori and the birth cohort effect: evidence of a continuous decrease of infection rates in childhood. Am J Gastroenterol. 1997;92(9):1480–2.PubMedGoogle Scholar
  48. 48.
    Arnold M, Laversanne M, Brown LM, Devesa SS, Bray F. Predicting the future burden of esophageal Cancer by histological subtype: international trends in incidence up to 2030. Am J Gastroenterol. 2017;112(8):1247–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973-1995. Int J Cancer. 2002;99(6):860–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Dent J, El-Serag H, Wallander MA, Johansson S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 2005;54(5):710–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 2014;63(6):871–80.Google Scholar
  52. 52.
    Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Ma J, Siegel R, Jemal A. Pancreatic cancer death rates by race among US men and women, 1970–2009. J Natl Cancer Inst. 2013;105(22):1694–700.PubMedCrossRefGoogle Scholar
  54. 54.
    Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6(12):699–708.PubMedCrossRefGoogle Scholar
  55. 55.
    Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):197–209.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosenberg PS, Wilson KL, Anderson WF. Are incidence rates of adult leukemia in the United States significantly associated with birth cohort? Cancer Epidemiol Biomarkers Prev. 2012;21(12):2159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Anfinsen KP, Devesa SS, Bray F, Troisi R, Jonasdottir TJ, Bruland OS, et al. Age-period-cohort analysis of primary bone cancer incidence rates in the United States (1976-2005). Cancer Epidemiol Biomarkers Prev. 2011;20(8):1770–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Calle EE, Thun MJ. Obesity and cancer. Oncogene. 2004;23(38):6365–78.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith NR, Jensen BW, Zimmermann E, Gamborg M, Sorensen TI, Baker JL. Associations between birth weight and colon and rectal cancer risk in adulthood. Cancer Epidemiol. 2016;42:181–5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhang X, Wu K, Giovannucci EL, Ma J, Colditz GA, Fuchs CS, et al. Early life body fatness and risk of colorectal cancer in U.S. women and men-results from two large cohort studies. Cancer epidemiol Biomarkers Prev. 2015;24(4):690–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Society AC, Eddy DM. Guidelines for the cancer-related checkup: recommendations and rationale. American Cancer Society. Atlanta, GA; 1980.Google Scholar
  62. 62.
    Biesheuvel C, Weigel S, Heindel W. Mammography screening: evidence, history and current practice in Germany and other European countries. Breast Care. 2011;6(2):104–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Smith-Bindman R, Chu PW, Miglioretti DL, Sickles EA, Blanks R, Ballard-Barbash R, et al. Comparison of screening mammography in the United States and the United Kingdom. JAMA. 2003;290(16):2129–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Holford TR. Understanding the effects of age, period, and cohort on incidence and mortality rates. Annu Rev Public Health. 1991;12(1):425–57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Division of Epidemiology, Department of Clinical SciencesUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Harold C. Simmons Comprehensive Cancer CenterDallasUSA
  3. 3.Department of Sociology, Lineberger Cancer Center, and Carolina Population CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations