Advertisement

Current Epidemiology Reports

, Volume 3, Issue 3, pp 201–211 | Cite as

Population Attributable and Preventable Fractions: Cancer Risk Factor Surveillance, and Cancer Policy Projection

  • Kevin D. ShieldEmail author
  • D. Maxwell Parkin
  • David C. Whiteman
  • Jürgen Rehm
  • Vivian Viallon
  • Claire Marant Micallef
  • Paolo Vineis
  • Lesley Rushton
  • Freddie Bray
  • Isabelle Soerjomataram
Cancer Epidemiology (G Colditz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cancer Epidemiology

Abstract

The proportions of new cancer cases and deaths that are caused by exposure to risk factors and that could be prevented are key statistics for public health policy and planning. This paper summarizes the methodologies for estimating, challenges in the analysis of, and utility of, population attributable and preventable fractions for cancers caused by major risk factors such as tobacco smoking, dietary factors, high body fat, physical inactivity, alcohol consumption, infectious agents, occupational exposure, air pollution, sun exposure, and insufficient breastfeeding. For population attributable and preventable fractions, evidence of a causal relationship between a risk factor and cancer, outcome (such as incidence and mortality), exposure distribution, relative risk, theoretical-minimum-risk, and counterfactual scenarios need to be clearly defined and congruent. Despite limitations of the methodology and the data used for estimations, the population attributable and preventable fractions are a useful tool for public health policy and planning.

Keywords

Risk Neoplasms Etiology Prevention and control Mortality Incidence Population attributable fraction 

Notes

Compliance with Ethical Standards

Conflict of Interest

Kevin D. Shield, D. Maxwell Parkin, David C. Whiteman, Jürgen Rehm, Vivian Viallon, Claire Marant Micallef, Paolo Vineis, Lesley Rushton, Freddie Bray, Isabelle Soerjomataram declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Sources

French National Cancer Institute [contract number 2015-002].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol. 1974;99(5):325–32.PubMedGoogle Scholar
  2. 2.
    Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9:531–41.PubMedGoogle Scholar
  3. 3.
    Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1192–308.Google Scholar
  4. 4.
    Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins; 2008.Google Scholar
  5. 5.
    Cole P, MacMahon B. Attributable risk percent in case-control studies. Br J Prev Soc Med. 1971;25(4):242–4.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lilienfeld A. Epidemiology of infectious and noninfectious disease: some comparisons. Am J Epidemiol. 1973;97:135–47.PubMedGoogle Scholar
  7. 7.
    Walter SD. Prevention for multifactorial diseases. Am J Epidemiol. 1980;112(3):409–16.PubMedGoogle Scholar
  8. 8.
    Walter S. The estimation and interpretation of attributable risk in health research. Biometrics. 1976:829-49.Google Scholar
  9. 9.
    Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health. 1982;7(4):292–309.CrossRefPubMedGoogle Scholar
  10. 10.
    Parkin DM. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105 Suppl 2:S2–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.•
    Whiteman DC, Webb PM, Green AC, Neale RE, Fritschi L, Bain CJ, et al. Cancers in Australia in 2010 attributable to modifiable factors: summary and conclusions. Aust N Z J Public Health. 2015;39(5):477–84. This manuscripts outlines the cancers attributable to various risk factors in Australia, and acts as an exemplary example of a cancer comparative risk assessment study.Google Scholar
  12. 12.
    Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol. 2015;25(3):155–61.CrossRefPubMedGoogle Scholar
  13. 13.•
    Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105 Suppl 2:S77–81. This manuscripts outlines the cancers attributable to various risk factors in United Kingdom, and acts as an exemplary example of a cancer comparative risk assessment study.Google Scholar
  14. 14.•
    Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323. This manuscript outlines the most recent comparative risk assessment study (part of the Global Burden of Disease study) comparing the burdens caused by various risk factors from 1990 to 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: American Institute for Cancer Research; 2008.Google Scholar
  16. 16.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: preamble. Lyon, France: International Agency for Research on Cancer 2006Google Scholar
  17. 17.
    De Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Soerjomataram I, Pukkala E, Brenner H, Coebergh JWW. On the avoidability of breast cancer in industrialized societies: older mean age at first birth as an indicator of excess breast cancer risk. Breast Cancer Res Treat. 2008;111(2):297–302.CrossRefPubMedGoogle Scholar
  19. 19.
    McCormack V, Boffetta P. Today’s lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low-and middle-income countries. Ann Oncol. 2011:mdq763.Google Scholar
  20. 20.
    Murray CJ, Lopez AD. On the comparable quantification of health risks: lessons from the Global Burden of Disease Study. Epidemiology. 1999;10(5):594–605.CrossRefPubMedGoogle Scholar
  21. 21.•
    Kontis V, Mathers CD, Rehm J, Stevens GA, Shield KD, Bonita R, et al. Contribution of six risk factors to achieving the 25× 25 non-communicable disease mortality reduction target: a modelling study. Lancet. 2014;384(9941):427–37. This manuscript outlines the effects of reductions in various risk factors to meet the 25 × 25 non-communicable disease mortality reduction targets.CrossRefPubMedGoogle Scholar
  22. 22.
    Asaria P, Chisholm D, Mathers C, Ezzati M, Beaglehole R. Chronic disease prevention: health effects and financial costs of strategies to reduce salt intake and control tobacco use. Lancet. 2007;370(9604):2044–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128(6):1185–97.PubMedGoogle Scholar
  24. 24.
    Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1):15–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ezzati M, Vander Hoorn S, Rodgers A, Lopez AD, Mathers CD, Murray CJ. Estimates of global and regional potential health gains from reducing multiple major risk factors. Lancet. 2003;362(9380):271–80.CrossRefPubMedGoogle Scholar
  26. 26.•
    Arnold M, Pandeya N, Byrnes G, Renehan AG, Stevens GA, Ezzati M, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46. This manuscript estimates the global burden of cancer attributable to high body mass index. This article is an exemplary example of a burden of disease study, and highlights that current upward trends in weight gain are expected to cause an increase in the burden of cancer.CrossRefPubMedGoogle Scholar
  27. 27.
    Olsen CM, Wilson LF, Nagle CM, Kendall BJ, Bain CJ, Pandeya N, et al. Cancers in Australia in 2010 attributable to insufficient physical activity. Aust N Z J Public Health. 2015;39(5):458–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Institut national de prevention et d’éducation pour la santé. 2005 Baromètre. Saint Denis, France: Institut national de prevention et d’éducation pour la santé, 2006.Google Scholar
  29. 29.
    World Health Organization. Global information system on alcohol and health. Geneva: World Health Organization; 2015.Google Scholar
  30. 30.
    Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br J Cancer. 2014.Google Scholar
  31. 31.
    Shield KD, Parry C, Rehm J. Focus on: chronic diseases and conditions related to alcohol use. Alcohol Res. 2013;85:2.Google Scholar
  32. 32.•
    Praud D, Rota M, Rehm J, Shield K, Zatoński W, Hashibe M, et al. Cancer incidence and mortality attributable to alcohol consumption. Int J Cancer. 2016;138(6):1380–7. This manuscript estimates the burden of cancer attributable to alcohol consumption. This article is an exemplary example of a burden of disease study, and highlights the large and growing burden of cancer attributable to alcohol globally.CrossRefPubMedGoogle Scholar
  33. 33.
    Rehm J, Taylor B, Patra J, Gmel G. Avoidable burden of disease: conceptual and methodological issues in substance abuse epidemiology. Int J Methods Psychiatr Res. 2006;15(4):191–11.CrossRefGoogle Scholar
  34. 34.•
    World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva: Switzerland: World Health Organization; 2013. This document establishes the current health priorities to reduce the burden caused by non-communicable diseases in the future. Among these priorities are reductions in cancer, tobacco smoking and alcohol consumption.Google Scholar
  35. 35.
    Soerjomataram I, De Vries E, Pukkala E, Coebergh JW. Excess of cancers in Europe: a study of eleven major cancers amenable to lifestyle change. Int J Cancer. 2007;120(6):1336–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Kulik MC, Nusselder WJ, Boshuizen HC, Lhachimi SK, Fernández E, Baili P, et al. Comparison of tobacco control scenarios: quantifying estimates of long-term health impact using the DYNAMO-HIA modeling tool. PLoS One. 2012;7(2), e32363.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Levy DT, Ellis JA, Mays D, Huang A-T. Smoking-related deaths averted due to three years of policy progress. Bull World Health Organ. 2013;91(7):509–18.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Soerjomataram I, De Vries E, Engholm G, Paludan-Müller G, Brønnum-Hansen H, Storm HH, et al. Impact of a smoking and alcohol intervention programme on lung and breast cancer incidence in Denmark: an example of dynamic modelling with Prevent. Eur J Cancer. 2010;46(14):2617–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Appleby J, Devlin N, Parkin D. NICE’s cost effectiveness threshold. Br Med J. 2007;7616:358.CrossRefGoogle Scholar
  40. 40.
    Murray CJ, Salomon JA, Mathers CD, Lopez AD. Summary measures of population health: concepts, ethics, measurement and applications. Geneva: World Health Organization; 2002.Google Scholar
  41. 41.
    Murray CJ. Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull World Health Organ. 1994;72(3):429.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Weiss W. Cigarette smoking and lung cancer trends. A light at the end of the tunnel? Chest. 1997;111(5):1414–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Environ Med. 1992;34(7):718–21.Google Scholar
  44. 44.
    Olsen J, Dragsted L, Autrup H. Cancer risk and occupational exposure to aflatoxins in Denmark. Br J Cancer. 1988;58(3):392.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O’Reilly KM, McLaughlin AM, Beckett WS, Sime PJ. Asbestos-related lung disease. Am Fam Physician. 2007;75(5):683–8.PubMedGoogle Scholar
  46. 46.
    Steenland K, Stayner L, Deddens J. Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup Environ Med. 2004;61(1):2–7.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Crump KS. Risk of benzene-induced leukemia: a sensitivity analysis of the pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health A. 1994;42(2):219–42.CrossRefGoogle Scholar
  48. 48.
    Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76.CrossRefPubMedGoogle Scholar
  49. 49.
    Chlebowski RT, Kuller LH, Prentice RL, Stefanick ML, Manson JE, Gass M, et al. Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med. 2009;360(6):573–87.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Briggs AD, Kehlbacher A, Tiffin R, Garnett T, Rayner M, Scarborough P. Assessing the impact on chronic disease of incorporating the societal cost of greenhouse gases into the price of food: an econometric and comparative risk assessment modelling study. BMJ Open. 2013;3(10), e003543.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Renehan AG, Soerjomataram I, Tyson M, Egger M, Zwahlen M, Coebergh JW, et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 2010;126(3):692–702.CrossRefPubMedGoogle Scholar
  52. 52.
    Gmel G, Shield KD, Kehoe-Chan TA, Rehm J. The effects of capping the alcohol consumption distribution and relative risk functions on the estimated number of deaths attributable to alcohol consumption in the European Union in 2004. BMC Med Res Methodol. 2013;13(1):1.CrossRefGoogle Scholar
  53. 53.
    Saracci R, Vineis P. Disease proportions attributable to environment. Environ Health. 2007;6(38).Google Scholar
  54. 54.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.CrossRefPubMedGoogle Scholar
  55. 55.
    Purshouse RC, Meier PS, Brennan A, Taylor KB, Rafia R. Estimated effect of alcohol pricing policies on health and health economic outcomes in England: an epidemiological model. Lancet. 2010;375(9723):1355–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8(6):340–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Pandeya N, Williams G, Green AC, Webb PM, Whiteman DC, Study AC. Alcohol consumption and the risks of adenocarcinoma and squamous cell carcinoma of the esophagus. Gastroenterology. 2009;136(4):1215–24. e2.CrossRefPubMedGoogle Scholar
  58. 58.
    Gauderman WJ, Morrison JL. Evidence for age-specific genetic relative risks in lung cancer. Am J Epidemiol. 2000;151(1):41–9.CrossRefPubMedGoogle Scholar
  59. 59.
    McPherson K, Steel C, Dixon J. Breast cancer—epidemiology, risk factors, and genetics. Br Med J. 2000;321(7261):624–8.CrossRefGoogle Scholar
  60. 60.
    Brennan P, Lewis S, Hashibe M, Bell DA, Boffetta P, Bouchardy C, et al. Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGE review. Am J Epidemiol. 2004;159(1):1–16.CrossRefPubMedGoogle Scholar
  61. 61.
    Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst. 2003;95(6):470–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Peto R, Boreham J, Lopez AD, Thun M, Heath C. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet. 1992;339(8804):1268–78.CrossRefPubMedGoogle Scholar
  63. 63.
    Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5(9), e185.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer. 2013;13(9):674–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Liu B-Q, Peto R, Chen Z-M, Boreham J, Wu Y-P, Li J-Y, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. Br Med J. 1998;317(7170):1411–22.CrossRefGoogle Scholar
  66. 66.
    Ezzati M, Lopez AD. Measuring the accumulated hazards of smoking: global and regional estimates for 2000. Tob Control. 2003;12(1):79–85.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Preston SH, Glei DA, Wilmoth JR. A new method for estimating smoking-attributable mortality in high-income countries. Int J Epidemiol. 2010;39(2):430–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Parkin D, Mesher D, Sasieni P. 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer. 2011;105:S66–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Armstrong B, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res. 1993;3(6):395–402.CrossRefPubMedGoogle Scholar
  70. 70.
    Olsen CM, Wilson LF, Green AC, Bain CJ, Fritschi L, Neale RE, et al. Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Aust N Z J Public Health. 2015;39(5):471–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang J, Kai FY. What’s the relative risk?: a method of correcting the odds ratio in cohort studies of common outcomes. J Am Med Assoc. 1998;280(19):1690–1.CrossRefGoogle Scholar
  72. 72.
    Ebrahim S, Montaner D, Lawlor DA. Clustering of risk factors and social class in childhood and adulthood in British women’s heart and health study: cross sectional analysis. Br Med J. 2004;328(7444):861.CrossRefGoogle Scholar
  73. 73.
    Schuit AJ, van Loon AJM, Tijhuis M, Ocké MC. Clustering of lifestyle risk factors in a general adult population. Prev Med. 2002;35(3):219–24.CrossRefPubMedGoogle Scholar
  74. 74.
    Blakely T, Hales S, Kieft C, Wilson N, Woodward A. The global distribution of risk factors by poverty level. Bull World Health Organ. 2005;83(2):118–26.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Flegal KM, Williamson DF, Graubard BI. Using adjusted relative risks to calculate attributable fractions. Am J Public Health. 2006;96(3):398.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Castellsagué X, Muñoz N, De Stefani E, Victora CG, Castelletto R, Rolón PA, et al. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int J Cancer. 1999;82(5):657–64.CrossRefPubMedGoogle Scholar
  77. 77.
    Flegal KM, Panagiotou OA, Graubard BI. Estimating population attributable fractions to quantify the health burden of obesity. Ann Epidemiol. 2015;25(3):201–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4), e1000058.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ezzati M, Vander Hoorn S, Rodgers A, Lopez AD, Mathers CD, Murray CJ. Potential health gains from reducing multiple risk factors. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL, editors. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. p. 2167–90.Google Scholar
  80. 80.
    Bruzzi P, Green S, Byar D, Brinton L, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985;122(5):904–14.PubMedGoogle Scholar
  81. 81.
    World Health Organization. Global Burden of Disease and Risk Factors. Geneva: Switzerland World Health Organization; 2006.Google Scholar
  82. 82.
    Kontis V, Mathers CD, Bonita R, Stevens GA, Rehm J, Shield KD, et al. Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study. Lancet Glob Health. 2015;3(12):e746–57.CrossRefPubMedGoogle Scholar
  83. 83.
    Driscoll T, Steenland K, Prüss-Üstün A, Nelson Deborah I, Leigh J. Occupational carcinogens: assessing the environmental burden of disease at national and local levels. Geneva: World Health Organization; 2004.Google Scholar
  84. 84.
    Shield KD, Rehm J. Difficulties with telephone-based surveys on alcohol consumption in high-income countries: the Canadian example. Int J Methods Psychiatr Res. 2012;21(1):17–28.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Groves RM. Survey errors and survey costs. New Jersey: John Wiley & Sons; 2004.Google Scholar
  86. 86.
    Tourangeau R, Yan T. Sensitive questions in surveys. Psychol Bull. 2007;133(5):859.CrossRefPubMedGoogle Scholar
  87. 87.
    Strack F, Martin LL. Thinking, judging, and communicating: a process account of context effects in attitude surveys. In: Schwarz N, Sudman S, editors. Social information processing and survey methodology. New York: Springer-Verlag; 1987. p. 123–48.CrossRefGoogle Scholar
  88. 88.
    Rehm J, Baliunas D, Borges GL, Graham K, Irving H, Kehoe T, et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. Addiction. 2010;105(5):817–43.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Copeland KT, Checkoway H, McMichael AJ, Holbrook RH. Bias due to misclassification in the estimation of relative risk. Am J Epidemiol. 1977;105(5):488–95.PubMedGoogle Scholar
  90. 90.
    Zeisser C, Stockwell TR, Chikritzhs T. Methodological biases in estimating the relationship between alcohol consumption and breast cancer: the role of drinker misclassification errors in meta-analytic results. Alcohol Clin Exp Res. 2014;38(8):2297–306.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    World Health Organization. OneHealth Tool. Geneva: World Health Organization; 2016.Google Scholar
  92. 92.
    Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. Comparative risk assessment collaborating group. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.CrossRefPubMedGoogle Scholar
  93. 93.
    International Agency for Research on Cancer. Attributable causes of cancer in France in the year 2000. Lyon: International Agency for Research on Cancer; 2007.Google Scholar
  94. 94.
    United Nations. Sustainable development goals: 17 goals to transform our world. New York: United Nations; 2016.Google Scholar
  95. 95.
    National Health Service. Change 4 life. London: National Health Service; 2016.Google Scholar
  96. 96.
    Cancer Research UK. Statistics on preventable cancers. London: Cancer Research UK; 2016.Google Scholar
  97. 97.
    Gartner CE, Barendregt JJ, Hall WD. Predicting the future prevalence of cigarette smoking in Australia: how low can we go and by when? Tob Control. 2009;18(3):183–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Soerjomataram I, Barendregt JJ, Gartner C, Kunst A, Møller H, Avendano M. Reducing inequalities in lung cancer incidence through smoking policies. Lung Cancer. 2011;73(3):268–73.CrossRefPubMedGoogle Scholar
  99. 99.
    Glaser SL, Clarke CA, Gomez SL, O’Malley CD, Purdie DM, West DW. Cancer surveillance research: a vital subdiscipline of cancer epidemiology. Cancer Causes Control. 2005;16(9):1009–19.CrossRefPubMedGoogle Scholar
  100. 100.
    Kauppinen T, Toikkanen J, Pedersen D, Young R, Ahrens W, Boffetta P, et al. Occupational exposure to carcinogens in the European Union. Occup Environ Med. 2000;57(1):10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Single E, Robson L, Xie X, Rehm J. The economic costs of alcohol, tobacco and illicit drugs in Canada, 1992. Addiction. 1998;93(7):991–1006.CrossRefPubMedGoogle Scholar
  102. 102.
    Fenoglio P, Parel V, Kopp P. The social cost of alcohol, tobacco and illicit drugs in France, 1997. Eur Addict Res. 2003;9(1):18–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kevin D. Shield
    • 1
    Email author
  • D. Maxwell Parkin
    • 2
  • David C. Whiteman
    • 3
  • Jürgen Rehm
    • 4
  • Vivian Viallon
    • 5
  • Claire Marant Micallef
    • 1
  • Paolo Vineis
    • 6
    • 7
  • Lesley Rushton
    • 8
  • Freddie Bray
    • 1
  • Isabelle Soerjomataram
    • 1
  1. 1.Section of Cancer SurveillanceInternational Agency for Research on CancerLyon CEDEX 08France
  2. 2.Centre for Cancer Prevention, Wolfson Institute of Preventive MedicineQueen Mary University of LondonLondonUK
  3. 3.Population HealthQIMR Berghofer Medical Research InstituteBrisbaneAustralia
  4. 4.Institute for Mental Health Policy ResearchCentre for Addiction and Mental HealthTorontoCanada
  5. 5.Université de Lyon, Université Lyon 1, UMRESTTE IFSTTAR, UMRESTTELyonFrance
  6. 6.Human Genetics FoundationTorinoItaly
  7. 7.MRC-PHE Center for Environment and HealthSchool of Public Health, Imperial College LondonLondonUK
  8. 8.Faculty of MedicineSchool of Public Health, Imperial College of LondonLondonUK

Personalised recommendations