Advertisement

Real-time predictive sliding mode control method for AGV with actuator delay

  • Zhi ChenEmail author
  • Jian Fu
  • Xiao-Wei Tu
  • Ao-Lei Yang
  • Min-Rui Fei
Article
  • 37 Downloads

Abstract

In this paper, a predictive sliding mode control method based on multi-sensor fusion is proposed to solve the problem of insufficient accuracy in trajectory tracking caused by actuator delay. The controller, based on the kinematics model, uses an inner and outer two-layer structure to achieve decoupling of position control and heading control. A reference positional change rate is introduced into the design of controller, making the automatic guided vehicle (AGV) capable of real-time predictive control ability. A stability analysis and a proof of predictive sliding mode control theory are provided. The experimental results show that the new control algorithm can improve the performance of the AGV controller by referring to the positional change rate, thereby improving the AGV operation without derailing.

Keywords

Predictive sliding mode control Multi-sensor fusion Trajectory tracking Real-time decoupling 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61903241, 61304223, 61603191, 61873158, 61573237), the China Postdoctoral Science Foundation (Grant No. 2018M630424), and the Natural Science Foundation of Shanghai Municipality (Grant No. 18ZR1415100).

References

  1. 1.
    Attia R, Orjuela R, Basset M (2014) Combined longitudinal and lateral control for automated vehicle guidance. Veh Syst Dyn 52(2):261–279CrossRefGoogle Scholar
  2. 2.
    Katriniok A, Maschuw JP, Christen F et al (2013) Optimal vehicle dynamics control for combined longitudinal and lateral autonomous vehicle guidance. In: European control conference (ECC), 17–19 July, Zurich, Switzerland, pp 974–979Google Scholar
  3. 3.
    Watanabe K, Tang J, Nakamura M et al (2002) A fuzzy-Gaussian neural network and its application to mobile robot control. IEEE Trans Control Syst Technol 4(2):193–199CrossRefGoogle Scholar
  4. 4.
    Tang ZL, Ge SS, Tee KP et al (2017) Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE Trans Syst Man Cybern Syst 46(12):1618–1629CrossRefGoogle Scholar
  5. 5.
    Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16(5):609–615CrossRefGoogle Scholar
  6. 6.
    Guo L, Huang X, Ge P et al (2013) Lane changing trajectory tracking control for intelligent vehicle on curved road based on backstepping. J Jilin Univ (Eng and Technol Ed) 43(2):323–328Google Scholar
  7. 7.
    Rossetter EJ, Switkes JP, Gerdes JC (2004) Experimental validation of the potential field lane keeping system. Int J Autom Technol 5(2):95–108Google Scholar
  8. 8.
    Kritayakirana K, Gerdes JC (2012) Autonomous vehicle control at the limits of handling. Int J Veh Auton Syst 10(4):271–296CrossRefGoogle Scholar
  9. 9.
    Falcone P, Borrelli F, Asgari J et al (2007) Predictive active steering control for autonomous vehicle systems. IEEE Trans Control Syst Technol 15(3):566–580CrossRefGoogle Scholar
  10. 10.
    Chwa D (2004) Sliding-mode tracking control of nonholonomic wheeled mobile robots in Polar coordinates. IEEE Trans Control Syst Technol 12(4):637–644MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cao Z, Zhao Y, Fu Y (2012) Trajectory tracking control approach of a car-like mobile robot. Acta Electron Sin 40(4):632–635Google Scholar
  12. 12.
    Yang JM, Kim JH (1999) Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot Autom 15(3):578–587CrossRefGoogle Scholar
  13. 13.
    Borrelli FI (2005) MPC based approach to active steering for autonomous vehicle systems. Int J Veh Auton Syst 3(2):265–291CrossRefGoogle Scholar
  14. 14.
    Beal CE, Gerdes JC (2013) Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans Control Syst Technol 21(4):1258–1269CrossRefGoogle Scholar
  15. 15.
    Roselli F, Corno M, Savaresi SM et al (2017) H∞ control with look-ahead for lane keeping in autonomous vehicles. In: IEEE conference on control technology and applications, 27–30 August, Kohala Coast, USA, pp 2220–2225Google Scholar
  16. 16.
    Chen Z, Wang D, Zhen Z et al (2017) Take-off and landing control for a coaxial ducted fan unmanned helicopter. Airc Eng Aerosp Technol 89(6):764–776CrossRefGoogle Scholar
  17. 17.
    Fu J, Chen WH, Wu QX (2012) Chattering-free sliding mode control with unidirectional auxiliary surfaces for miniature helicopters. Int J Intell Comput Cybern 5(3):421–438MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen Z, Wang D, Zhen Z (2018) Modelling and hovering control for a coaxial unmanned helicopter using sliding mode. Aircr Eng Aerosp Technol 90(5):815–827CrossRefGoogle Scholar
  19. 19.
    Fu J, Wu QX, Mao ZH (2013) Chattering-free SMC with unidirectional auxiliary surfaces for nonlinear system with state constraints. Int J Innov Comput Inf Control 9(12):4793–4809Google Scholar
  20. 20.
    Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li THS, Chang SJ, Tong W (2004) Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. Fuzzy Syst IEEE Trans 12(4):491–501CrossRefGoogle Scholar
  22. 22.
    Bianco CGL, Piazzi A, Romano M (2004) Smooth motion generation for unicycle mobile robots via dynamic path inversion. IEEE Trans Rob 20(5):884–891CrossRefGoogle Scholar
  23. 23.
    Samson C (1995) Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans Autom Control 40(1):64–77MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yim H, Butler AC (1995) Motion planning using fuzzy logic control with minimum sensors. In: IEEE international symposium on intelligent control, 27–29 Aug, Monterey, CA, USA, pp 558–564Google Scholar
  25. 25.
    Mallem A, Nourredine S, Benaziza W (2016) Mobile robot trajectory tracking using PID fast terminal sliding mode inverse dynamic control. In: The 4th international conference on control engineering & information technology (CEIT), 12–18 December, Hammamet, Tunisia, pp 1–6Google Scholar
  26. 26.
    Do KD, Jiang ZP, Pan J (2004) A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots. IEEE Trans Robot Autom 20(3):589–594CrossRefGoogle Scholar
  27. 27.
    Xiao S, Liu S, Jiang F et al (2019) Nonlinear dynamic response of reciprocating compressor system with rub-impact fault caused by subsidence. J Vib Control 25(11):1737–1751MathSciNetCrossRefGoogle Scholar
  28. 28.
    Huang SN, Ren W (1997) Design of vehicle following control systems with actuator delays. Int J Syst Sci 28(2):145–151CrossRefGoogle Scholar
  29. 29.
    Xiao L, Darbha S, Gao F (2008) Stability of string of adaptive cruise control vehicles with parasitic delays and lags. In: The 11th international IEEE conference on intelligent transportation systems, 12–15 Oct, Beijing, China, pp 1101–1106Google Scholar
  30. 30.
    Choi SB, Hedrick JK (1996) Robust throttle control of automotive engines: theory and experiment. J Dyn Syst Meas Contr 118(1):92CrossRefGoogle Scholar
  31. 31.
    Kahveci NE, Ioannou PA (2011) Automatic steering of vehicles subject to actuator saturation and delay. In: The 14th international IEEE conference on intelligent transportation systems, 5 October, Washington DC, USA, pp 119–124Google Scholar
  32. 32.
    Liu F, Chen Y (2017) Improved model predictive control for cooperative adaptive cruise control subject to actuator delay. In: 2017 Chinese automation congress (CAC), 20–22 October, Jinan, China, pp 4717–4722Google Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.College of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations