Advances in Manufacturing

, Volume 5, Issue 1, pp 35–49 | Cite as

Laser conditioning and structuring of grinding tools – a review

  • Bahman AzarhoushangEmail author
  • Ali Zahedi


The conditioning of grinding tools is one of the most important factors for achieving an optimal grinding process. It influences the grinding forces and temperatures and, therefore, the achievable material removal rate, dimensional accuracy and the surface integrity of the workpiece. Furthermore, the roundness, profile accuracy and the wear of the grinding tools are strongly influenced by the conditioning process. The conditioning process should be matched to the abrasive type and the bonding of the grinding tool. Laser conditioning is a promising unconventional and non-contact method, which is able to condition all kinds of abrasives and bonding types. The main advantages of this novel method are no tool wear, good repeatability and controllability, high precision and a relatively short process time. Additionally, using this method grinding tools can be micro-structured. This paper reviews the literature on the laser conditioning of grinding tools, covering the associated setups, wheel conditioning and structuring mechanisms, and experimental results. It also discusses the technical barriers that have to be overcome before laser conditioning can be fully integrated into manufacturing.


Laser conditioning Structuring Dressing Truing Grinding tools Grinding 


  1. 1.
    Daneshi A, Jandaghi N, Tawakoli T (2014) Effect of dressing on internal cylindrical grinding. Procedia CIRP 14:37–41CrossRefGoogle Scholar
  2. 2.
    Rowe WB (2014) Grinding wheel dressing. In: Rowe WB (ed) Principles of modern grinding technology, 2nd edn. William Andrew, Waltham, pp 63–82CrossRefGoogle Scholar
  3. 3.
    Shih AJ (2000) An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding. Int J Mach Tools Manuf 40:1755–1774CrossRefGoogle Scholar
  4. 4.
    Wegener K, Hoffmeister HW, Karpuschewski B et al (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60:757–777CrossRefGoogle Scholar
  5. 5.
    Linke BS (2007) Wirkmechanismen beim Abrichten keramisch gebundener Schleifscheiben. Shaker, AachenGoogle Scholar
  6. 6.
    Klocke F, Kuchle A (2009) Grinding, honing, lapping. Springer, BerlinGoogle Scholar
  7. 7.
    Kitzig H, Tawakoli T, Azarhoushang B (2016) A novel ultrasonic-assisted dressing method of electroplated grinding wheels via stationary diamond dresser. Int J Adv Manuf Technol 86(1):1–8Google Scholar
  8. 8.
    Azarhoushang B, Rasifard A (2014) Das Abrichten als ein integraler Bestandteil des Schleifprozesses. Diam Bus 49:66–73Google Scholar
  9. 9.
    Marinescu ID (2007) Handbook of machining with grinding wheels. CRC, Boca RatonGoogle Scholar
  10. 10.
    Westkämper E (1995) Grinding assisted by Nd: YAG lasers. CIRP Ann Manuf Technol 44:317–320CrossRefGoogle Scholar
  11. 11.
    Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. 2nd edn. Industrial Press, New YorkGoogle Scholar
  12. 12.
    Tawakoli T, Rasifard A (2011) Dressing of grinding wheels. In: Jackson JM, Davim PJ (eds) Machining with abrasives. Springer, US, Boston, pp 181–244CrossRefGoogle Scholar
  13. 13.
    Zahedi A, Azarhoushang B, Akbari J et al (2016) Optimization and application of laser-dressed cBN grinding wheels. Adv Mater Res 1136:90–96CrossRefGoogle Scholar
  14. 14.
    Schöpf M, Beltrami I, Boccadoro M et al (2001) ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Ann Manuf Technol 50:125–128CrossRefGoogle Scholar
  15. 15.
    Wei C, Hu D, Xu K et al (2011) Electrochemical discharge dressing of metal bond micro-grinding tools. Int J Mach Tools Manuf 51:165–168CrossRefGoogle Scholar
  16. 16.
    Pavel R, Pavel M, Marinescu I (2004) Investigation of pre-dressing time for ELID grinding technique. J Mater Process Technol 149:591–596CrossRefGoogle Scholar
  17. 17.
    Rabiey M (2011) Dry grinding with CBN wheels, the effect of structuring. Dissertation, Universität StuttgartGoogle Scholar
  18. 18.
    Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites: unterbrochenes Schleifen von keramischen Faserverbundwerkstoffen. Dissertation, Stuttgart University, Shaker PublicationGoogle Scholar
  19. 19.
    Walter C, Komischke T, Kuster F et al (2014) Laser-structured grinding tools—generation of prototype patterns and performance evaluation. J Mater Process Technol 214:951–961CrossRefGoogle Scholar
  20. 20.
    Tawakoli T (2014) Moderne schleiftechnologie und feinstbearbeitung 2014: neue entwicklungen und trends aus forschung und praxis. In: The seminar of moderne schleiftechnologie und feinstbearbeitung. Stuttgart, VolkanGoogle Scholar
  21. 21.
    Zahedi A, Azarhoushang B (2016) Strukturieren und profilieren mittels laser: moderne schleiftechnologie und feinstbearbeitung. In: The seminar of neue entwicklungen und trends aus forschung und praxis. VolkanGoogle Scholar
  22. 22.
    Tawakoli T, Rabiey M (2008) An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach Sci Tech 12:514–528CrossRefGoogle Scholar
  23. 23.
    Tawakoli T, Heisel U, Lee DH et al (2012) An experimental investigation on the characteristics of cylindrical plunge dry grinding with structured cBN wheels. Procedia CIRP 1:399–403CrossRefGoogle Scholar
  24. 24.
    Nakayama K, Takagi J, Abe T (1977) Grinding wheel with helical grooves—an attempt to improve the grinding performance. CIRP Ann Manuf Technol 26:133–138Google Scholar
  25. 25.
    Azarhoushang B (2014) Das abrichten als integraler bestandteil des schleifprozesses: unkonventionelle Abrichtprozesse. Diam Bus 50:82–89Google Scholar
  26. 26.
    Kong MC, Miron CB, Axinte DA et al (2012) On the relationship between the dynamics of the power density and workpiece surface texture in pulsed laser ablation. CIRP Ann Manuf Technol 61:203–206CrossRefGoogle Scholar
  27. 27.
    Yang J, Sun S, Brandt M et al (2010) Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol 210:2215–2222CrossRefGoogle Scholar
  28. 28.
    Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O et al (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf 89:14–28CrossRefGoogle Scholar
  29. 29.
    Ahn DG, Byun KW (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferrous Metals Soc China 19:s32–s39CrossRefGoogle Scholar
  30. 30.
    Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46:1879–1891CrossRefGoogle Scholar
  31. 31.
    Fabis PM (1996) Laser machining of CVD diamond: chemical and structural alteration effects. Surf Coat Technol 82:320–325CrossRefGoogle Scholar
  32. 32.
    Butler-Smith PW, Axinte DA, Daine M (2011) Ordered diamond micro-arrays for ultra-precision grinding—an evaluation in Ti-6Al-4V. Int J Mach Tools Manuf 51:54–66CrossRefGoogle Scholar
  33. 33.
    Kovalenko V, Yao J, Zhang Q et al (2013) Laser milling of the intractable materials. Procedia CIRP 6:504–509CrossRefGoogle Scholar
  34. 34.
    Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—a review. J Eur Ceram Soc 29:969–993CrossRefGoogle Scholar
  35. 35.
    Dhupal D, Doloi B, Bhattacharyya B (2008) Pulsed Nd: YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int J Mach Tools Manuf 48:236–248CrossRefGoogle Scholar
  36. 36.
    Fortunato A, Guerrini G, Melkote SN et al (2015) A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride. CIRP Ann Manuf Technol 64:189–192CrossRefGoogle Scholar
  37. 37.
    Kang DW, Lee CM (2014) A study on the development of the laser-assisted milling process and a related constitutive equation for silicon nitride. CIRP Ann Manuf Technol 63:109–112CrossRefGoogle Scholar
  38. 38.
    Zahedi A, Tawakoli T, Akbari J et al (2014) Conditioning of vitrified bond CBN grinding wheels using a picosecond laser. Adv Mater Res 1017:573–579CrossRefGoogle Scholar
  39. 39.
    Gadag S (2011) Studying the mechanism of micromachining by short pulsed laser. Southern Methodist University, DallasGoogle Scholar
  40. 40.
    Giridhar MS, Seong K, Schuelzgen A et al (2004) Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Appl Opt 43:4584–4589CrossRefGoogle Scholar
  41. 41.
    Varel H, Ashkenasi D, Rosenfeld A et al (1997) Micromachining of quartz with ultrashort laser pulses. Appl Phys A 65:367–373CrossRefGoogle Scholar
  42. 42.
    Zahedi A, Tawakoli T, Azarhoushang B et al (2014) Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol 76:1479–1491CrossRefGoogle Scholar
  43. 43.
    Chen G, Deng H, Zhou X et al (2015) Online tangential laser profiling of coarse-grained bronze-bonded diamond wheels. Int J Adv Manuf Technol 79(9):1477–1482CrossRefGoogle Scholar
  44. 44.
    Wang XY, Wu YB, Wang J et al (2005) Absorbed energy in laser truing of a small vitrified CBN grinding wheel. J Mater Process Technol 164–165:1128–1133CrossRefGoogle Scholar
  45. 45.
    Ramesh BN, Radhakrishnan V, Murti YVGS (1989) Investigations on laser dressing of grinding wheels—Part I: preliminary study. J Eng Ind 111:244CrossRefGoogle Scholar
  46. 46.
    Ramesh BN, Radhakrishnan V (1989) Investigations on laser dressing of grinding wheels—Part II: grinding performance of a laser dressed aluminum oxide wheel. J Eng Ind 111:253CrossRefGoogle Scholar
  47. 47.
    Ramesh BN, Radhakrishnan V (1995) Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. Int J Mach Tools Manuf 35:661–671CrossRefGoogle Scholar
  48. 48.
    Xie XZ, Chen GY, Li LJ (2004) Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Opt Laser Technol 36:409–419CrossRefGoogle Scholar
  49. 49.
    Hosokawa A, Ueda T, Yunoki T (2006) Laser dressing of metal bonded diamond wheel. CIRP Ann Manuf Technol 55:329–332CrossRefGoogle Scholar
  50. 50.
    Khangar AA, Kenik EA, Dahotre NB (2005) Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceram Int 31:621–629CrossRefGoogle Scholar
  51. 51.
    Chen G, Mei L, Zhang B et al (2010) Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Opt Lasers Eng 48:295–304CrossRefGoogle Scholar
  52. 52.
    Timmer JH (2001) Laserkonditionieren von CBN- und Diamantschleifscheiben. Dissertation, Braunschweig University, Vulkan-Verl., EssenGoogle Scholar
  53. 53.
    Kang RK, Yuan JT, Zhang YP et al (2001) Truing of diamond wheels by laser. KEM 202–203:137–142CrossRefGoogle Scholar
  54. 54.
    Chen M, Sun F, Lee Y et al (2003) Laser-assisted grinding wheel dressing (II)—experimental researches. J Mater Sci Technol 19:167–168Google Scholar
  55. 55.
    Chen X, Feng ZJ, Pashby IR (2004) A study on laser cleaning of Al2O3 grinding wheels. KEM 257–258:359–364CrossRefGoogle Scholar
  56. 56.
    Jackson MJ, Robinson GM, Chen X (2006) Laser surface preparation of vitrified grinding wheels. J Mater Eng Perform 15(2):247–250CrossRefGoogle Scholar
  57. 57.
    Dold C, Transchel R, Rabiey M et al (2011) A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources. CIRP Ann Manuf Technol 60:363–366CrossRefGoogle Scholar
  58. 58.
    Khangar A, Dahotre NB, Jackson MJ et al (2006) Laser dressing of alumina grinding wheels. J Mater Eng Perform 15(2):178–181CrossRefGoogle Scholar
  59. 59.
    Rabiey M, Walter C, Kuster F et al (2012) Dressing of hybrid bond CBN wheels using short-pulse fiber laser. SV-JME 58:462–469CrossRefGoogle Scholar
  60. 60.
    Walter C, Rabiey M, Warhanek M et al (2012) Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fibre laser. CIRP Ann Manuf Technol 61:279–282CrossRefGoogle Scholar
  61. 61.
    Khangar A, Dahotre NB (2005) Morphological modification in laser-dressed alumina grinding wheel material for microscale grinding. J Mater Process Technol 170:1–10CrossRefGoogle Scholar
  62. 62.
    von Witzendorff P, Stompe M, Moalem A et al (2014) Dicing of hard and brittle materials with on-machine laser-dressed metal-bonded diamond blades. Precis Eng 38:162–167CrossRefGoogle Scholar
  63. 63.
    Guo B, Zhao Q, Fang X (2014) Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels. J Mater Process Technol 214:1045–1051CrossRefGoogle Scholar
  64. 64.
    Walter C, Komischke T, Weingärtner E et al (2014) Structuring of CBN grinding tools by ultrashort pulse laser ablation. Procedia CIRP 14:31–36CrossRefGoogle Scholar
  65. 65.
    Stutz GE, Marshall GF (2012) Handbook of optical and laser scanning, 2nd edn. CRC, Boca RatonGoogle Scholar
  66. 66.
    Azarhoushang B, Zahedi A (2016) Laserabrichten von superabrasiven Schleifwerkzeugen: moderne schleiftechnologie und feinstbearbeitung. In: The Seminar of Neue Entwicklungen und Trends aus Forschung und Praxis, VolkanGoogle Scholar
  67. 67.
    Jackson MJ, Khangar A, Chen X et al (2007) Laser cleaning and dressing of vitrified grinding wheels. J Mater Process Technol 185:17–23CrossRefGoogle Scholar
  68. 68.
    Yung KC, Chen GY, Li LJ (2003) The laser dressing of resin-bonded CBN wheels by a Q-switched Nd:YAG laser. Int J Adv Manuf Technol 22(7):541–546CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Precision Machining (KSF)Furtwangen University of Applied SciencesVillingen-SchwenningenGermany

Personalised recommendations