Advertisement

Advances in Manufacturing

, Volume 3, Issue 3, pp 173–192 | Cite as

Ultrasonic vibration-assisted machining: principle, design and application

  • Wei-Xing Xu
  • Liang-Chi ZhangEmail author
Article

Abstract

Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.

Keywords

Ultrasonic vibration-assisted (UVA) machining Cutting Metal alloys Ceramics Composites 

Notes

Acknowledgements

The authors appreciate the Australian Research Council for its financial support to this work.

References

  1. 1.
    Kumabe J, Fuchizawa K, Soutome T et al (1989) Ultrasonic superposition vibration cutting of ceramics. Precis Eng 11:71–76CrossRefGoogle Scholar
  2. 2.
    Xiao M, Karube S, Soutome T et al (2002) Analysis of chatter suppression in vibration cutting. Int J Mach Tool Manuf 42:1677–1685CrossRefGoogle Scholar
  3. 3.
    Zhou M, Wang XJ, Ngoi BKA et al (2002) Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol 121:243–251CrossRefGoogle Scholar
  4. 4.
    Babitsky VI, Kalashnikov AN, Meadows A et al (2003) Ultrasonically assisted turning of aviation materials. J Mater Process Technol 132:157–167CrossRefGoogle Scholar
  5. 5.
    Fang FZ, Liu XD, Lee LC (2003) Micro-machining of optical glasses: a review of diamond-cutting glasses. Sadhana 28:945–955CrossRefGoogle Scholar
  6. 6.
    Mitrofanov AV, Ahmed N, Babitsky VI et al (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol 162:649–654CrossRefGoogle Scholar
  7. 7.
    Zhong ZW, Lin G (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol 27:1077–1081MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rahman CNM, Andrew SSK (2007) A study on ultrasonic vibration cutting of low alloy steel. J Mater Process Technol 192:159–165Google Scholar
  9. 9.
    Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–172CrossRefGoogle Scholar
  10. 10.
    Liu K, Li XP, Rahman M (2008) Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide. Int J Adv Manuf Technol 35:833–841CrossRefGoogle Scholar
  11. 11.
    Maurotto A, Muhammad R, Roy A et al (2012) Comparing machinability of Ti-15-3-3-3 and Ni-625 alloys in UAT. Proc Cirp 1:330–335CrossRefGoogle Scholar
  12. 12.
    Dong GJ, Zhang HJ, Zhou M et al (2013) Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites. Mater Manuf Process 28:999–1002Google Scholar
  13. 13.
    Xu W, Zhang LC, Wu Y (2014) Elliptic vibration-assisted cutting of fibre-reinforced polymer composites: understanding the material removal mechanisms. Compos Sci Technol 92:103–111CrossRefGoogle Scholar
  14. 14.
    Kumabe J, Masuko M (1958) Study on the ultrasonic cutting (1st report). Trans Jpn Soc Mech Eng 24:109–114CrossRefGoogle Scholar
  15. 15.
    Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tool Manuf 38:239–255CrossRefGoogle Scholar
  16. 16.
    Jin M, Murakawa M (2001) Development of a practical ultrasonic vibration cutting tool system. J Mater Process Technol 113:342–347CrossRefGoogle Scholar
  17. 17.
    Shamoto E, Suzuki N, Moriwaki T et al (2002) Development of ultrasonic elliptical vibration controller for elliptical vibration cutting. CIRP Ann 51:327–330CrossRefGoogle Scholar
  18. 18.
    Ostasevicius V, Gaidys R, Rimkeviciene J et al (2010) An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting. J Sound Vib 329:4866–4879CrossRefGoogle Scholar
  19. 19.
    Kumabe J (1961) Study on ultrasonic cutting: 2nd report, the mechanism of tool rest for ultrasonic cutting. Trans Jpn Soc Mech Eng 27:1389–1396CrossRefGoogle Scholar
  20. 20.
    Kumabe J (1961) Study on ultrasonic cutting: 3rd report. An analysis of the mechanism of ultrasonic cutting. Trans Jpn Soc Mech Eng 27:1396–1404CrossRefGoogle Scholar
  21. 21.
    Balamuth L (1966) Ultrasonic assistance to conventional metal removal. Ultrasonics 4:125–130CrossRefGoogle Scholar
  22. 22.
    Skelton RC (1968) Turning with an oscillating tool. Int J Mach Tool Des Res 8:239–259CrossRefGoogle Scholar
  23. 23.
    Kumabe J (1979) Fundamentals and applications: ultrasonic cutting. Jikkyou Publishing Co., 1979Google Scholar
  24. 24.
    Weber H, Herberger J, Pilz R (1984) Turning of machinable glass ceramics with an ultrasonically vibrated tool. CIRP Ann 33:85–87CrossRefGoogle Scholar
  25. 25.
    Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann 40:559–562CrossRefGoogle Scholar
  26. 26.
    Moriwaki T, Shamoto E, Inoue K (1992) Ultraprecision ductile cutting of glass by applying ultrasonic vibration. CIRP Ann 41:141–144CrossRefGoogle Scholar
  27. 27.
    Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann 43:35–38CrossRefGoogle Scholar
  28. 28.
    Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann 44:31–34CrossRefGoogle Scholar
  29. 29.
    Shamoto E, Morimoto Y, Moriwaki T (1996) Elliptical vibration cutting (1st report): cutting principle and basic performance. J Jpn Soc Precis Eng 62:1127–1131CrossRefGoogle Scholar
  30. 30.
    Shamoto E, Suzuki N, Hino R (2007) Simulation of elliptical vibration cutting process with thin shear plane model. In: Proceedings of ASPE, pp 64–69.Google Scholar
  31. 31.
    Shamoto E, Ma C, Moriwaki T (1999) Elliptical vibration cutting (3rd report): application to three-dimensional cutting and investigation of practical effects. J Jpn Soc Precis Eng 65:586–591CrossRefGoogle Scholar
  32. 32.
    Shamoto E, Morimoto Y, Moriwaki T (1999) Elliptical vibration cutting (2nd report): study on effects of vibration conditions. J Jpn Soc Precis Eng 65:411–417CrossRefGoogle Scholar
  33. 33.
    Shamoto E, Moriwaki T (1999) Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann 48:441–444CrossRefGoogle Scholar
  34. 34.
    Shamoto E, Suzuki N, Moriwaki T et al (2001) Elliptical vibration cutting (4th report): development of tool vibration control system and its application to ultraprecision cutting. J Jpn Soc Precis Eng 67:1871–1877CrossRefGoogle Scholar
  35. 35.
    Ma C, Shamoto E, Moriwaki T (2004) Study on the improvement of machining system stability by applying ultrasonic elliptical vibration cutting. Acta Armamentarii 25:752–756Google Scholar
  36. 36.
    Ma CX, Shamoto E, Moriwaki T et al (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tool Manuf 44:1305–1310CrossRefGoogle Scholar
  37. 37.
    Shamoto E, Suzuki N (2006) Ultraprecision cutting by applying elliptical vibration. J Jpn Soc Precis Eng 72:440–443CrossRefGoogle Scholar
  38. 38.
    Shamoto E, Suzuki N (2009) Development of elliptical vibration cutting technology and its application to ultraprecision/micro machining of hard/brittle materials. Ultra-Precis Mach Technol 69–70:133–137Google Scholar
  39. 39.
    Suzuki N, Haritani M, Yang J et al (2007) Elliptical vibration cutting of tungsten alloy molds for optical glass parts. CIRP Ann 56:127–130CrossRefGoogle Scholar
  40. 40.
    Shamoto E, Suzuki N, Tsuchiya E et al (2005) Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann 54:321–324CrossRefGoogle Scholar
  41. 41.
    Suzuki N, Yan Z, Hino R et al (2006) Ultraprecision micro-machining of single crystal germanium by applying elliptical vibration cutting. In: 2006 IEEE international symposium on micro-nanomechatronics and human science, pp 41–46Google Scholar
  42. 42.
    Kim GD, Loh BG (2010) Machining of micro-channels and pyramid patterns using elliptical vibration cutting. Int J Adv Manuf Technol 49:961–968CrossRefGoogle Scholar
  43. 43.
    Suzuki N, Yokoi H, Shamoto E (2011) Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting. Precis Eng 35:44–50CrossRefGoogle Scholar
  44. 44.
    Zhang JG, Suzuki N, Kato T et al (2012) Influence of material composition on ductile machining of tungsten carbide in elliptical vibration cutting. Key Eng Mater 523–524:113–118Google Scholar
  45. 45.
    Ahn JH, Lim HS, Son SM (1999) Improvement of micro-machining accuracy by 2-dimensional vibration cutting. In: Proceedings of the fourteenth annual meeting of the ASPE, pp 150–153.Google Scholar
  46. 46.
    Kim GD, Loh BG (2007) An ultrasonic elliptical vibration cutting device for micro V-groove machining: kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol 190:181–188CrossRefGoogle Scholar
  47. 47.
    Dow TA, Cerniway M, Sohn A et al (2001) Vibration assisted diamond turning using elliptical tool motion. In: Proceedings of the 2001 ASPE annual meeting, pp 92–97.Google Scholar
  48. 48.
    Joshi RS, Singh H (2011) Piezoelectric transducer based devices for development of a sustainable machining system: a review. IEEE Int FerroGoogle Scholar
  49. 49.
    Harada K, Sasahara H (2009) Effect of dynamic response and displacement/stress amplitude on ultrasonic vibration cutting. J Mater Process Technol 209:4490–4495CrossRefGoogle Scholar
  50. 50.
    Zhong ZW, Lin G (2005) Diamond turning of a metal matrix composite with ultrasonic vibrations. Mater Manuf Process 20:727–735CrossRefGoogle Scholar
  51. 51.
    Lee JS, Lee DW, Jung YH et al (2002) A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. J Mater Process Technol 130:396–400MathSciNetCrossRefGoogle Scholar
  52. 52.
    Moriwaki T (2010) Development of 2DOF ultrasonic vibration cutting device for ultraprecision elliptical vibration cutting. Key Eng Mater 447–448:164–168CrossRefGoogle Scholar
  53. 53.
    Nosouhi R, Behbahani S, Amini S et al (2013) Experimental and analytical study of the elliptical vibration-assisted turning process with the dynamic friction model. Proc Inst Mech Eng Part B: J Eng Manuf 0954405413508943:1–10Google Scholar
  54. 54.
    Li X, Zhang DY (2006) Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting. J Mater Process Technol 180:91–95CrossRefGoogle Scholar
  55. 55.
    Kim GD, Loh BG (2008) Characteristics of elliptical vibration cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency. J Micromech Microeng 18:751–790Google Scholar
  56. 56.
    Guo P, Ehmann KF (2013) Development of a tertiary motion generator for elliptical vibration texturing. Precis Eng 37:364–371CrossRefGoogle Scholar
  57. 57.
    Guo P, Ehmann KF (2013) An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int J Mach Tool Manuf 64:85–95CrossRefGoogle Scholar
  58. 58.
    Xu W, Wu Y (2011) A new through-feed centerless grinding technique using a surface grinder. J Mater Process Technol 211:1599–1605CrossRefGoogle Scholar
  59. 59.
    Xu W, Wu Y (2011) A new in-feed centerless grinding technique using a surface grinder. J Mater Process Technol 211:141–149CrossRefGoogle Scholar
  60. 60.
    Kumabe J (1964) Few novel machine tools to be used for supersonically vibrating cut. J Jpn Soc Mech Eng 67:85–92Google Scholar
  61. 61.
    Han L, Xu WL, Tso SK (1998) Ultrasonically assisted and piezoelectric actuators integrated cutting tool. Jpn J Appl Phys 37(8):4616–4619CrossRefGoogle Scholar
  62. 62.
    Schmütz J, Brinksmeier E, Bischoff E (2001) Sub-surface deformation in vibration cutting of copper. Precis Eng 25:218–223CrossRefGoogle Scholar
  63. 63.
    Kumar VC, Hutchings IM (2004) Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribol Int 37:833–840CrossRefGoogle Scholar
  64. 64.
    Ma C, Shamoto E, Moriwaki T et al (2005) Suppression of burrs in turning with ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 45:1295–1300CrossRefGoogle Scholar
  65. 65.
    Yan J, Oowada T, Zhou T et al (2009) Precision machining of microstructures on electroless-plated NiP surface for molding glass components. J Mater Process Tech 209:4802–4808CrossRefGoogle Scholar
  66. 66.
    Gao GF, Zhao B, Jiao F et al (2002) Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting. J Mater Process Tech 129:66–70CrossRefGoogle Scholar
  67. 67.
    Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann 55:745–768CrossRefGoogle Scholar
  68. 68.
    Kim GD, Loh BG (2007) Characteristics of chip formation in micro V-grooving using elliptical vibration cutting. J Micromech Microeng 17:1458–1466CrossRefGoogle Scholar
  69. 69.
    Shimizu J, Yamamoto T, Zhou LB et al (2013) Fabrication of surface microtexture by vibration assisted cutting. Adv Mater Res 797:638–641CrossRefGoogle Scholar
  70. 70.
    Zhang J, Suzuki N, Shamoto E (2013) Investigation on machining performance of amplitude control sculpturing method in elliptical vibration cutting. Proc CIRP 8:327–332CrossRefGoogle Scholar
  71. 71.
    Brinksmeier E, Glabe R (1999) Elliptical vibration cutting of steel with diamond tools. In: Proceedings of the fourteenth annual meeting of the ASPE, pp 163–166.Google Scholar
  72. 72.
    Zhou M, Eow YT, Ngoi BKA et al (2003) Vibration-assisted precision machining of steel with PCD tools. Mater Manuf Process 18:825–834CrossRefGoogle Scholar
  73. 73.
    Klocke F, Dambon O, Bulla B (2010) Diamond turning of aspheric steel molds for optics replication. Proc SPIE 75900B1–75900B10Google Scholar
  74. 74.
    Zhang XQ, Kumar AS, Rahman M et al (2011) Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. J Mater Process Technol 211:1701–1709CrossRefGoogle Scholar
  75. 75.
    Paul E, Evans CJ, Mangamelli A et al (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18:4–19CrossRefGoogle Scholar
  76. 76.
    Li ZJ, Fang FZ, Gong H et al (2013) Review of diamond-cutting ferrous metals. Int J Adv Manuf Technol 68:1717–1731CrossRefGoogle Scholar
  77. 77.
    Chen Y, Zhang L (2013) Polishing of diamond materials: mechanisms, modeling and implementation. Springer, New YorkCrossRefGoogle Scholar
  78. 78.
    Zhang XQ, Liu K, Kumar AS et al (2014) A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel. J Mater Process Technol 214:496–506CrossRefGoogle Scholar
  79. 79.
    Suzuki N, Nakamura A, Shamoto E et al (2003) Ultraprecision micromachining of hardened steel by applying ultrasonic elliptical vibration cutting. In: Mhs2003: proceedings of 2003 international symposium on micromechatronics and human science, pp 221–226.Google Scholar
  80. 80.
    Xiao M, Sato K, Karube S et al (2003) The effect of tool nose radius in ultrasonic vibration cutting of hard metal. Int J Mach Tool Manuf 43:1375–1382CrossRefGoogle Scholar
  81. 81.
    Klocke F, Dambon O, Bulla B et al (2008) Ultrasonic assisted turning of hardened steel with mono-crystalline diamond. In: Proceedings of the 23rd annual ASPE meeting, Portland, OregonGoogle Scholar
  82. 82.
    Xie XD, Yong L, Camvinh D et al (2012) Experiment and discussion on ultrasonic vibration-assisted single point diamond turning of die steels. Ultra-Precis Mach Technol 497:1–5Google Scholar
  83. 83.
    Shamoto E, Suzuki N (2008) Elliptical vibration cutting of hard mold materials. In: Optical fabrication and testing, Optical Society of America, pp OTuB1.Google Scholar
  84. 84.
    Bulla B, Klocke F, Dambon O et al (2012) Ultrasonic assisted diamond turning of hardened steel for mould manufacturing. In: Proceedings of precision engineering and nanotechnology (Aspen2011), 516, pp 437–442.Google Scholar
  85. 85.
    Fang FZ, Zhang XD, Weckenmann A et al (2013) Manufacturing and measurement of freeform optics. CIRP Ann 62:823–846CrossRefGoogle Scholar
  86. 86.
    Babitsky VI, Mitrofanov AV, Silberschmidt VV (2004) Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42:81–86CrossRefGoogle Scholar
  87. 87.
    Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tool Manuf 45:1353–1367CrossRefGoogle Scholar
  88. 88.
    Maurotto A, Roy A, Babitsky VI et al (2012) Analysis of machinability of Ti- and Ni-based alloys. Solid State Phenomena 188:330–338CrossRefGoogle Scholar
  89. 89.
    Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134:233–253CrossRefGoogle Scholar
  90. 90.
    Koshimizu S (2009) Ultrasonic vibration-assisted cutting of titanium alloy. Key Eng Mater 389–390:277–282Google Scholar
  91. 91.
    Wu YB, Niu JT, Fujimoto M et al (2013) Fundamental machining characteristics of ultrasonic assisted turning of titanium alloy Ti–6Al–4V. Adv Mater Res 797:344–349CrossRefGoogle Scholar
  92. 92.
    Patil S, Joshi S, Tewari A et al (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54:694–705CrossRefGoogle Scholar
  93. 93.
    Muhammad R, Hussain MS, Maurotto A et al (2014) Analysis of a free machining alpha+beta titanium alloy using conventional and ultrasonically assisted turning. J Mater Process Technol 214:906–915CrossRefGoogle Scholar
  94. 94.
    Muhammad R, Maurotto A, Roy A et al (2012) Hot ultrasonically assisted turning of beta-Ti alloy. Proc CIRP 1:336–341CrossRefGoogle Scholar
  95. 95.
    Maurotto A, Muhammad R, Roy A et al (2013) Enhanced ultrasonically assisted turning of a beta-titanium alloy. Ultrasonics 53:1242–1250CrossRefGoogle Scholar
  96. 96.
    Muhammad R, Maurotto A, Demiral M et al (2014) Thermally enhanced ultrasonically assisted machining of Ti alloy. CIRP J Manuf Sci Technol 7:159–167CrossRefGoogle Scholar
  97. 97.
    Kim GD, Loh BG (2011) Direct machining of micro patterns on nickel alloy and mold steel by vibration assisted cutting. Int J Precis Eng Manuf 12:583–588CrossRefGoogle Scholar
  98. 98.
    Hsu CY, Lin YY, Lee WS et al (2008) Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J Mater Process Technol 198:359–365CrossRefGoogle Scholar
  99. 99.
    Song Y, Park CH, Moriwaki T (2010) Mirror finishing of Co–Cr–Mo alloy using elliptical vibration cutting. Precis Eng 34:784–789CrossRefGoogle Scholar
  100. 100.
    Zhang YL, Zhou ZM, Lv Y et al (2013) Wear behavior of natural diamond tool in cutting tungsten-based alloy. Int J Adv Manuf Technol 69:329–335CrossRefGoogle Scholar
  101. 101.
    Suzuki N, Yan Z, Haritani M et al (2007) Ultraprecision machining of tungsten alloy by applying ultrasonic elliptical vibration cutting. J Jpn Soc Precis Eng 73:360–366CrossRefGoogle Scholar
  102. 102.
    Zhang L, Mahdi M (1996) The plastic behaviour of silicon subjected to micro-indentation. J Mater Sci 31:5671–5676CrossRefGoogle Scholar
  103. 103.
    Zarudi I, Zhang LC (2000) On the limit of surface integrity of alumina by ductile-mode grinding. J Eng Mater 122:129–134Google Scholar
  104. 104.
    Zarudi I, Zhang L (1999) Initiation of dislocation systems in alumina under single-point scratching. J Mater Res 14:1430–1436CrossRefGoogle Scholar
  105. 105.
    Zarudi I, Zhang L, Cockayne D (1998) Subsurface structure of alumina associated with single-point scratching. J Mater Sci 33:1639–1645CrossRefGoogle Scholar
  106. 106.
    Zarudi I, Zhang L, Mai YW (1996) Subsurface damage in alumina induced by single-point scratching. J Mater Sci 31:905–914CrossRefGoogle Scholar
  107. 107.
    Neo WK, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63:465–480CrossRefGoogle Scholar
  108. 108.
    Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73:949–957CrossRefGoogle Scholar
  109. 109.
    Suzuki N, Masuda S, Haritani M et al (2004) Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting. In: Proceedings of the 2004 international symposium on micro-nanomechatronics and human science, pp 133–138.Google Scholar
  110. 110.
    Zhou M, Liu XD, Huang SN (2006) Ultraprecision cutting of glass BK7. Key Eng Mater 315–316:536–540CrossRefGoogle Scholar
  111. 111.
    Zhao H, Zhou M (2008) An experimental study on diamond cutting of optical glass. Key Eng Mater 375–376:211–215CrossRefGoogle Scholar
  112. 112.
    Zhou M, Liang YC, Huang SN (2008) Ultraprecision ductile-regime cutting of optical glass. Key Eng Mater 364:69–73CrossRefGoogle Scholar
  113. 113.
    Gan J, Wang X, Zhou M et al (2003) Ultraprecision diamond turning of glass with ultrasonic vibration. Int J Adv Manuf Technol 21:952–955CrossRefGoogle Scholar
  114. 114.
    Giovanola J, Finnie I (1980) On the machining of glass. J Mater Sci 15:2508–2514CrossRefGoogle Scholar
  115. 115.
    Klocke F, Demmer A, Heselhaus M (2004) Material removal mechanisms in ultrasonic-assisted diamond turning of brittle materials. Int J Mater Prod Technol 20:231–238CrossRefGoogle Scholar
  116. 116.
    Leung TP, Lee WB, Lu XM (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73:42–48CrossRefGoogle Scholar
  117. 117.
    Zhang XQ, Arif M, Liu K et al (2013) A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int J Mach Tool Manuf 69:57–66CrossRefGoogle Scholar
  118. 118.
    Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Process Technol 113:348–354CrossRefGoogle Scholar
  119. 119.
    Liu K, Li XP, Rahman M et al (2004) Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. Int J Adv Manuf Technol 24:389–394CrossRefGoogle Scholar
  120. 120.
    Nath C, Rahman M, Neo KS (2009) Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting. Int J Mach Tool Manuf 49:1089–1095CrossRefGoogle Scholar
  121. 121.
    Nath C, Rahman M, Neo KS (2009) A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide. J Mater Process Technol 209:5830–5836CrossRefGoogle Scholar
  122. 122.
    Nath C, Rahman M, Neo KS (2009) A study on ultrasonic elliptical vibration cutting of tungsten carbide. J Mater Process Technol 209:4459–4464CrossRefGoogle Scholar
  123. 123.
    Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113:184–189CrossRefGoogle Scholar
  124. 124.
    Tuersley IP, Jawaid A, Pashby IR (1994) Various methods of machining advanced ceramic materials—review. J Mater Process Technol 42:377–390CrossRefGoogle Scholar
  125. 125.
    Fess E, Bechtold R, Bechtold M et al (2013) Ultrasonic processing of hard materials for conformal optics. Proc SPIE 870811–870815Google Scholar
  126. 126.
    Amini S, Khosrojerdi MR, Nosouhi R et al (2014) An experimental investigation on the machinability of Al2O3 in vibration-assisted turning using PCD tool. Mater Manuf Process 29:331–336CrossRefGoogle Scholar
  127. 127.
    Zhang ZF, Zhang LC, Mai YW (1995) Wear of ceramic particle-reinforced metal-matrix composites. 1. Wear mechanisms. J Mater Sci 30:1961–1966CrossRefGoogle Scholar
  128. 128.
    Teti R (2002) Machining of composite materials. CIRP Ann 51:611–634CrossRefGoogle Scholar
  129. 129.
    Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tool Manuf 43:1015–1022CrossRefGoogle Scholar
  130. 130.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manuf 48:1613–1625CrossRefGoogle Scholar
  131. 131.
    Liu CS, Zhao B, Gao GF et al (2002) Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al. J Mater Process Technol 129:196–199CrossRefGoogle Scholar
  132. 132.
    Zhao B, Liu CS, Zhu XS et al (2002) Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al. J Mater Process Technol 129:380–384CrossRefGoogle Scholar
  133. 133.
    Cheng X, Ma X (2010) Microstructure analysis of SiCp/Al composites with ultrasonic vibration turning. In: 3rd IEEE international conference on biomedical engineering and informatics (BMEI), pp 2321–2324.Google Scholar
  134. 134.
    Takeyama H, Iijima N (1988) Machinability of glassfiber reinforced plastics and application of ultrasonic machining. CIRP Ann 37:93–96CrossRefGoogle Scholar
  135. 135.
    Kim JD, Lee ES (1994) A study of the ultrasonic-vibration cutting of carbon-fiber-reinforced plastics. J Mater Process Technol 43:259–277CrossRefGoogle Scholar
  136. 136.
    Xu WX, Zhang L, Wu YB (2012) Micromechanical modelling of elliptic vibration-assisted cutting of unidirectional FRP composites. Adv Mater Res 591:531–534MathSciNetCrossRefGoogle Scholar
  137. 137.
    Xu W, Zhang L (2014) On the mechanics and material removal mechanisms of vibration-assisted cutting of unidirectional fibre-reinforced polymer composites. Int J Mach Tools Manuf 80:1–10CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory for Precision and Nano Processing Technologies, School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations