Extremely rich dynamical behaviors in a simple nonautonomous Jerk system with generalized nonlinearity : hyperchaos, intermittency, offset-boosting and multistability

  • 108 Accesses

  • 1 Citations


This paper investigates the extremely rich dynamical behaviors of the simple Jerk system as proposed by Volos et al. (Nonlinear Dyn 89(2):1047–1061, 2017) based on two main modifications: (i) introduction of a periodic sinusoidal external excitation in the system and (ii) generalization of the nonlinear function of the system in the form \(\varphi _k(x) = 0.5 (\exp (kx)-\exp (-x))\) as recently proposed by Kengne group (Negou and Kengne in AEU Int J Electron Commun 90:1–19, 2018). These changes are in origin of the observed rich dynamical behaviors including hyperchaos, chaos, intermittency, offset boosting and coexistence of multiple attractors. All these interesting dynamical behaviors are highlighted using the common dynamical tools such as bifurcation diagrams, spectrum of the Lyapunov exponents, two parameters diagrams, phase portraits and Poincaré sections. To the best of the author’s knowledge, the addition of an external force in the class of Jerk systems is new and has not been discussed earlier (despite the huge amount of related research works) and thus represents an enriching contribution to the understanding of the dynamics of Jerk’s system. The captured laboratory measurements are in perfect agreement with the theoretical analysis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    Murali K, Lakshmanan M (1991) Bifurcation and chaos of the sinusoidally-driven Chua’s circuit. Int J Bifurc Chaos 1(02):369–384

  2. 2.

    Pivka L, Zheleznyak AL, Chua LO (1994) Arnold tongues, devils staircase, and self-similarity in the driven Chuas circuit. Int J Bifurc Chaos 4(06):1743–1753

  3. 3.

    Anishchenko V, Vadivasova T, Postnov D, Sosnovtseva O, Wu C, Chua L (1995) Dynamics of the nonautonomous Chua’s circuit. Int J Bifurc Chaos 5(06):1525–1540

  4. 4.

    Mathias AC, Rech PC (2013) Changes in the dynamics of a Rössler oscillator by an external forcing. Chin Phys Lett 30(3):030502

  5. 5.

    Liu J-C, Chou H-C, Liao MC, Ho YS (2003) Non-autonomous chaotic analysis of the Colpitts oscillator with Lur’e systems. Microw Opt Technol Lett 36(3):175–181

  6. 6.

    Mahmoud GM, Ahmed ME, Sabor N (2011) On autonomous and nonautonomous modified hyperchaotic complex Lü systems. Int J Bifurc Chaos 21(07):1913–1926

  7. 7.

    Wu X, Wang J, Lu J-A, Iu HH (2007) Hyperchaotic behavior in a non-autonomous unified chaotic system with continuous periodic switch. Chaos Solitons Fractals 32(4):1485–1490

  8. 8.

    Vincent UE, Nana Nbendjo BR, Ajayi AA, Njah AN, McClintock PVE (2015) Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit. Int J Dyn Control 3(4):363–370.

  9. 9.

    Gao T, Chen G, Chen Z, Cang S (2007) The generation and circuit implementation of a new hyper-chaos based upon Lorenz system. Phys Lett A 361(1):78–86

  10. 10.

    Sun K, Liu X, Zhu C, Sprott J (2012) Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn 69(3):1383–1391

  11. 11.

    Xu Q, Song Z, Bao H, Chen M, Bao B (2018) Two-neuron-based non-autonomous memristive hopfield neural network: numerical analyses and hardware experiments. AEU Int J Electron Commun 96:66–74.

  12. 12.

    Rossler O (1979) An equation for hyperchaos. Phys Lett A 71(2):155–157

  13. 13.

    Thamilmaran K, Lakshmanan M, Venkatesan A (2004) Hyperchaos in a modified canonical Chua’s circuit. Int J Bifurc Chaos 14(01):221–243

  14. 14.

    Fonzin TF, Kengne J, Pelap F (2018) Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification. Nonlinear Dyn 93:1–17

  15. 15.

    Matsumoto T, Chua L, Kobayashi K (1986) Hyperchaos: laboratory experiement and numerical confirmation. IEEE Trans Circuits Syst 33(11):1143–1147

  16. 16.

    Elwakil A, Kennedy M (1999) Inductorless hyperchaos generator. Microelectron J 30(8):739–743

  17. 17.

    Li Y, Tang WK, Chen G (2005) Generating hyperchaos via state feedback control. Int J Bifurc Chaos 15(10):3367–3375

  18. 18.

    Gao T, Chen Z, Yuan Z, Chen G (2006) A hyperchaos generated from Chen’s system. Int J Modern Phys C 17(04):471–478

  19. 19.

    Thamilmaran K, Lakshmanan M (2002) Classification of bifurcations and routes to chaos in a variant of Murali–Lakshmanan–Chua circuit. Int J Bifurc Chaos 12(04):783–813

  20. 20.

    Ishaq Ahamed A, Lakshmanan M (2013) Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int J Bifurc Chaos 23(06):1350098

  21. 21.

    Fonzin TF, Srinivasan K, Kengne J, Pelap F (2018) Coexisting bifurcations in a memristive hyperchaotic oscillator. AEU Int J Electron Commun 90:110–122

  22. 22.

    Ahmad I, Srisuchinwong B, San-Um W (2018) On the first hyperchaotic hyperjerk system with no equilibria: a simple circuit for hidden attractors. IEEE Access 6:35449–35456

  23. 23.

    Pérez G, Cerdeira HA (1995) Extracting messages masked by chaos. Phys Rev Lett 74(11):1970

  24. 24.

    Kengne J, Chedjou J, Fozin TF, Kyamakya K, Kenne G (2014) On the analysis of semiconductor diode-based chaotic and hyperchaotic generatorsa case study. Nonlinear Dyn 77(1–2):373–386

  25. 25.

    Volos C, Akgul A, Pham V-T, Stouboulos I, Kyprianidis I (2017) A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn 89(2):1047–1061

  26. 26.

    Negou AN, Kengne J (2018) Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. AEU Int J Electron Commun 90:1–19

  27. 27.

    Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurc Chaos 21(09):2391–2394

  28. 28.

    Njitacke Z, Kengne J, Fotsin H, Negou AN, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos Solitons Fractals 91:180–197

  29. 29.

    Sprott J (1997) Some simple chaotic Jerk functions. Am J Phys 65(6):537–543

  30. 30.

    Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore

  31. 31.

    Mboupda Pone JR, Kamdoum Tamba V, Kom GH, Tiedeu AB. Period-doubling route to chaos, bistability and antimononicity in a Jerk circuit with quintic nonlinearity. Int J Dyn Control.

  32. 32.

    Kengne J, Signing VRF, Chedjou JC, Leutcho GD (2018) Nonlinear behavior of a novel chaotic Jerk system: antimonotonicity, crises, and multiple coexisting attractors. Int J Dyn Control 6(2):468–485.

  33. 33.

    Kengne J, Negou AN, Tchiotsop D (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based Jerk circuit. Nonlinear Dyn 88(4):2589–2608

  34. 34.

    Leutcho G, Kengne J, Kengne LK (2018) Dynamical analysis of a novel autonomous 4-d hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors. Chaos Solitons Fractals 107:67–87

  35. 35.

    Tsafack N, Kengne J (2018) A novel autonomous 5-d hyperjerk RC circuit with hyperbolic sine function. Sci World J 2018:1–17

  36. 36.

    Leutcho GD, Kengne J (2018) A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos Solitons Fractals 113:275–293

  37. 37.

    Tagne RM, Kengne J, Negou AN (2018) Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity. Int J Dyn Control.

  38. 38.

    Kengne J, Tsotsop MF, Mbe EK, Fotsin H, Kenne G (2016) On coexisting bifurcations and hyperchaos in a class of diode-based oscillators: a case study. Int J Dyn Control 5:1–12

  39. 39.

    Fonzin Fozin T, Kengne J, Pelap F (2014) Theoretical analysis and adaptive synchronization of a 4D hyperchaotic oscillator. J Chaos 2014:1–15

  40. 40.

    Li C, Sprott JC, Kapitaniak T, Lu T (2018) Infinite lattice of hyperchaotic strange attractors. Chaos Solitons Fractals 109:76–82

  41. 41.

    Li C, Akgul A, Sprott JC, Iu HH, Thio WJ-C (2018) A symmetric pair of hyperchaotic attractors. Int J Circuit Theory Appl 46:2434

  42. 42.

    Kengne J, Njitacke Z, Fotsin H (2016) Dynamical analysis of a simple autonomous Jerk system with multiple attractors. Nonlinear Dyn 83(1–2):751–765

  43. 43.

    Li P, Zheng T, Li C, Wang X, Hu W (2016) A unique Jerk system with hidden chaotic oscillation. Nonlinear Dyn 86(1):197–203

  44. 44.

    Li C, Sprott JC, Xing H (2016) Hypogenetic chaotic Jerk flows. Phys Lett A 380(11):1172–1177

  45. 45.

    Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca Raton

  46. 46.

    Lakshmanan M, Rajaseekar S (2012) Nonlinear dynamics: integrability, chaos and patterns. Springer, Berlin

  47. 47.

    Lakshmanan M, Murali K (1996) Chaos in nonlinear oscillators: controlling and synchronization, vol 13. World Scientific, Singapore

  48. 48.

    Signing VF, Kengne J (2018) Coexistence of hidden attractors, 2-torus and 3-torus in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Int J Dyn Control 6:1–8

  49. 49.

    Njitacke Z, Kengne J, Tapche RW, Pelap F (2018) Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Soliton Fratals 107:177–185

  50. 50.

    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317

  51. 51.

    Hellen EH, Lanctot MJ (2007) Nonlinear damping of the LC circuit using antiparallel diodes. Am J Phys 75(4):326–330

  52. 52.

    Mohammadi A, Shayegh F, Abdipour A, Mirzavand R (2007) Direct conversion ehm transceivers design for millimeter-wave wireless applications. EURASIP J Wirel Commun Netw 2007(1):1–9

  53. 53.

    Anishchenko VS, Safonova M, Chua LO (1993) Stochastic resonance in the nonautonomous Chua’s circuit. J Circuits Syst Comput 3(02):553–578

  54. 54.

    Bao B, Qian H, Wang J, Xu Q, Chen M, Wu H, Yu Y (2017) Numerical analyses and experimental validations of coexisting multiple attractors in hopfield neural network. Nonlinear Dyn 90(4):2359–2369

  55. 55.

    Pisarchik AN, Kuntsevich BF (2002) Control of multistability in a directly modulated diode laser. IEEE J Quantum Electron 38(12):1594–1598

  56. 56.

    Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

  57. 57.

    Sharma P, Shrimali M, Prasad A, Kuznetsov N, Leonov G (2015) Control of multistability in hidden attractors. Eur Phys J Spec Topics 224(8):1485–1491

  58. 58.

    Li C, Sprott JC (2016) Variable-boostable chaotic flows. Optik Int J Ligth Electron Opt 127(22):10389–10398

  59. 59.

    Obeid I, Morizio JC, Moxon KA, Nicolelis MA, Wolf PD (2003) Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans Biomed Eng 50(2):255–258

  60. 60.

    Kengne J, Njitacke Tabekoueng Z, Kamdoum Tamba V, Nguomkam Negou A (2015) Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos Interdiscip J Nonlinear Sci 25(10):103126

  61. 61.

    Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74(2):189–197

  62. 62.

    Alombah NH, Fotsin H, Ngouonkadi EM, Nguazon T (2016) Dynamics, analysis and implementation of a multiscroll memristor-based chaotic circuit. Int J Bifurc Chaos 26(08):1650128

  63. 63.

    Jovic B (2011) Synchronization techniques for chaotic communication systems. Springer, Berlin

Download references


A. Ngo Mouelas and T. Fonzin are grateful to Mr Tchagna Kouanou Aurelle from UR-MACETS for valuable discussions and reading of the manuscript. All authors would like to convey thanks to the anonymous reviewers for their useful suggestions and comments that helped to improve the content of the present paper.

Author information

Correspondence to T. Fonzin Fozin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ngo Mouelas, A., Fonzin Fozin, T., Kengne, R. et al. Extremely rich dynamical behaviors in a simple nonautonomous Jerk system with generalized nonlinearity : hyperchaos, intermittency, offset-boosting and multistability. Int. J. Dynam. Control (2019).

Download citation


  • Nonautonomous Jerk system
  • Hyperchaos
  • Multistability
  • Intermittency
  • Offset boosting
  • Experimental study