Advertisement

Measure of chaos and adaptive synchronization of chaotic satellite systems

  • Ayub Khan
  • Sanjay KumarEmail author
Article

Abstract

In this paper, we analyze the chaotic behaviour of satellite system through the dissipative, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan–Yorke dimension. We observe the qualitative behaviour of satellite systems through these tools to justify the chaos in the system. We obtain the equilibrium points of chaotic satellite system. At each equilibrium point we yield the eigenvalue of Jacobian matrix of satellite system and verify the unstable regions. We calculate Kaplan–Yorke dimension, \(D_{KY}= 2.1905\). Adaptive synchronization for two identical satellite systems is presented. The qualitative and simulated results are provided for verification of systems.

Keywords

Adaptive synchronization Satellite systems Bifurcation Lyapunov exponents 

References

  1. 1.
    Carroll TL, Pecora LM (1991) Synchronization chaotic circuits. IEEE Trans CAS I(38):435–446Google Scholar
  2. 2.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Djaouida S (2014) Synchronization of a perturbed satellite attitude motion. Int J Mech Aerosp Ind Mechatron Manuf Eng 8(4):734–738Google Scholar
  4. 4.
    Guan P, Liu XJ, Liu JZ (2005) Flexible satellite attitude control via sliding mode technique. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference 2005 Seville, Spain, 12–15 DecGoogle Scholar
  5. 5.
    Smale S (1967) Differentiable dynamical systems. Bull Am Math Soc 73:747–817MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang YW, Guan ZH, Wen X (2004) Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos Solitons Fractals 19:899–903CrossRefzbMATHGoogle Scholar
  7. 7.
    Khan A, Tyagi A (2016) Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control.  https://doi.org/10.1007/s40435-016-0265-7 Google Scholar
  8. 8.
    Khan A, Shikha (2016) Hybrid function projective synchronization of chaotic systems via adaptive control. Int J Dyn Control.  https://doi.org/10.1007/s40435-016-0258-6
  9. 9.
    Lin JS, Liao TL, Yan JJ, Yau HT (2005) Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: adaptive robust observer-based approach. Chaos Solitons Fractals 26(3):971–978MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duan GR, Yu HH (2013) LMI in control systems analysis, design and applications. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Khan A, Kumar S (2018) Study of chaos in satellite system. Pramana J Phys 90:13CrossRefGoogle Scholar
  12. 12.
    Khan A, Kumar S (2018) Measuring chaos and synchronization of chaotic satellite systems using sliding mode control. Optim Control Appl Methods.  https://doi.org/10.1002/oca.2428 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tsui APM, Jones AJ (2000) The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem. Physica D 135:41–62MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kuang J, Tan SH (2000) Chaotic attitude motion of satellites under small perturbation torques. J Sound Vib 235(2):175–200CrossRefGoogle Scholar
  15. 15.
    Kuang J, Tan S, Arichandran K, Leung AYT (2001) Chaotic dynamics of an asymmetrical gyrostat. Int J Non Linear Mech 36:1213–1233CrossRefzbMATHGoogle Scholar
  16. 16.
    Kong LY, Zhoul FQ, Zou I (2006) The control of chaotic attitude motion of a perturbed spacecraft. In: Proceedings of the 25th Chinese control conference-2006 Harbin, Heilongjiang, 7–11 AugGoogle Scholar
  17. 17.
    Liu T, Zhao J (2003) Dynamics of spacecraft. Harbin Institute of Technology Press, Harbin (in Chinese) Google Scholar
  18. 18.
    Hamidzadeh SM, Esmaelzadeh R (2014) Control and synchronization chaotic satellite using active control. Int J Comput Appl 94(10):0975–8887Google Scholar
  19. 19.
    Saha LM, Das MK, Budhraja M (2006) Characterization of attractors in Gumowski-Mira map using fast Lyapunov indicator. FORMA 21:151–158MathSciNetGoogle Scholar
  20. 20.
    Stephen Lynch (2007) Dynamical systems with applications using mathematical. Birkhuser, BerlinGoogle Scholar
  21. 21.
    Sidi MJ (1997) Spacecraft dynamics and control a practical engineering approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. 22.
    Zhang RW (1998) Satellite orbit and attitude dynamics and control. Beihang University Press, Beijing (in Chinese) Google Scholar
  23. 23.
    MacKunis W, Dupree K, Bhasin S, Dixon WE (2008) Adaptive neural network satellite attitude control in the presence of inertia and CMG actuator uncertainties. In: American control conference-2008 Westin Seattle Hotel, Seattle, Washington, 11–13 JuneGoogle Scholar
  24. 24.
    Show LL, Juang JC, Jan YW (2003) An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol 11(1):73CrossRefGoogle Scholar
  25. 25.
    Park JH (2007) Adaptive modified projective synchronization of unified chaotic system with uncertain parameter. Chaos Soliton Fractals 34:1552–1559CrossRefzbMATHGoogle Scholar
  26. 26.
    Fan Y, Wang W, Lin Y (2015) Synchronization of a class of chaotic systems based on adaptive control design of input-to-state stability. Int J Innov Computing Inf Control 11(3):803–814Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Natural SciencesJammia Millia IslamiaNew DelhiIndia

Personalised recommendations