Advertisement

Novel SMC control design for path following of autonomous vehicles with uncertainties and mismatched disturbances

  • Kada Akermi
  • Samira Chouraqui
  • Boudjemaa Boudaa
Article
  • 13 Downloads

Abstract

The article propose a novel robust, accurate, and fast control strategy with uncertainties/mismatched disturbances for path following control of autonomous vehicles using an innovative sliding mode control (SMC).The molded SMC is based on gain scheduling with fuzzy system, the algorithm of a radial basis function neural networks (RBFNN) and disturbance observer (DOB). The fuzzy system provide an automatic adjustment of the gain of SMC in order to compensate variations of system parameters; the use of DOB is to estimate the mismatched disturbances, and the RBFNN is for assessing the uncertainties. In addition, the stability of the closed-loop system is proved by the Lyapunov stability theorem. The proposed controller is applied to the path following of autonomous vehicle in extreme driving condition at high speed and under different road adhesion conditions. To show the effectiveness of our controller, simulation results have been compared with other robust strategies.

Keywords

Path following Sliding mode control the neural networks Autonomous vehicle Disturbance observer Uncertainties and mismatched disturbances 

References

  1. 1.
    Jalali M, Hashemi E, Khajepour A, Chen SK, Litkouhi B (2018) A combined-slip predictive control of vehicle stability with experimental verification. Veh Syst Dyn 56(2):319–340.  https://doi.org/10.1080/00423114.2017.1376751 CrossRefGoogle Scholar
  2. 2.
    Jalali M, Khosravani S, Khajepour A, Chen SK, Litkouhi B (2017) Model predictive control of vehicle stability using coordinated active steering and differential brakes. Mechatronics 48:30–41.  https://doi.org/10.1016/j.mechatronics.2017.10.003 CrossRefGoogle Scholar
  3. 3.
    Choi C, Kang Y (2017) Simultaneous braking and steering control method based on nonlinear model predictive control for emergency driving support. Int J Control Autom Syst 15(1):345–353.  https://doi.org/10.1007/s12555-015-0055-6 CrossRefGoogle Scholar
  4. 4.
    Ercan Z, Gokasan M, Borrelli F (2017) An adaptive and predictive controller design for lateral control of an autonomous vehicle. In: 2017 IEEE international conference on vehicular electronics and safety (ICVES), pp 13–18. https://doi.org/10.1109/icves.2017.7991894Google Scholar
  5. 5.
    Gutjahr B, Gröll L, Werling M (2017) Lateral vehicle trajectory optimization using constrained linear time-varying MPC. IEEE Trans Intell Transp Syst.  https://doi.org/10.1109/tits.2016.2614705 CrossRefGoogle Scholar
  6. 6.
    Nahidi A, Kasaiezadeh A, Khosravani S, Khajepour A, Chen SK, Litkouhi B (2017) Modular integrated longitudinal and lateral vehicle stability control for electric vehicles. Mechatronics 44:60–70.  https://doi.org/10.1016/j.mechatronics.2017.04.001 CrossRefGoogle Scholar
  7. 7.
    Krid M, Benamar F, Lenain R (2017) A new explicit dynamic path tracking controller using generalized predictive control. Int J Control Autom Syst 15(1):303–314.  https://doi.org/10.1007/s12555-015-0160-6 CrossRefGoogle Scholar
  8. 8.
    Wang R, Jing H, Hu C, Member S, Yan F, Chen N (2016) Robust H∞ path following control for autonomous ground vehicles with delay and data dropout. IEEE Trans Intell Transp Syst 17(7):2042–2050CrossRefGoogle Scholar
  9. 9.
    Tagne G, Talj R, Charara A (2015) Design and validation of a robust immersion and invariance controller for the lateral dynamics of intelligent vehicles. Control Eng Pract 40:81–92.  https://doi.org/10.1016/j.conengprac.2015.03.002 CrossRefGoogle Scholar
  10. 10.
    Alcala E, Puig V, Quevedo J, Escobet T, Comasolivas R (2018) Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning. Control Eng Pract 73(September 2017):1–12.  https://doi.org/10.1016/j.conengprac.2017.12.004 CrossRefGoogle Scholar
  11. 11.
    Zhang H, Zhao W (2018) Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle. Mech Syst Signal Process 101:389–404.  https://doi.org/10.1016/j.ymssp.2017.08.042 CrossRefGoogle Scholar
  12. 12.
    Wang R, Yin G, Zhuang J, Zhang N, Chen J (2016) The path tracking of four-wheel steering autonomous vehicles via sliding mode control. In: Vehicle power and propulsion conference (VPPC), 2016 IEEE, pp 1–6Google Scholar
  13. 13.
    Bian C, Yin G, Zhang N, Xu L (2017) Takagi-Sugeno Fuzzy model predictive controller design for combining lane keeping and speed tracking of four wheels steering and four wheels drive electric vehicle. In: IEEE 2017, control and decision conference (CCDC), pp 4067–4072Google Scholar
  14. 14.
    Han G, Fu W, Wang W, Wu Z (2017) The lateral tracking control for the intelligent vehicle based on adaptive PID neural network. Sensors 17(6):1244.  https://doi.org/10.3390/s17061244 CrossRefGoogle Scholar
  15. 15.
    Tagne G, Talj R, Charara A (2016) Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles. IEEE Trans Intell Transp Syst.  https://doi.org/10.1109/tits.2015.2486815 CrossRefGoogle Scholar
  16. 16.
    Xu D, Shi Y, Ji Z (2018) Model-free adaptive discrete-time integral sliding-mode-constrained-control for autonomous 4WMV parking systems. IEEE Trans Industr Electron 65(1):834–843.  https://doi.org/10.1109/TIE.2017.2739680 CrossRefGoogle Scholar
  17. 17.
    Junwei L, Jie Y, Junbo Z, Huali W (2016) Backstepping sliding mode lane keeping control of lateral position error with dynamic of tire steering device. Optik.  https://doi.org/10.1016/j.ijleo.2015.11.100 CrossRefGoogle Scholar
  18. 18.
    Ruijie Wang R, Guodong Yin G, Xianjian Jin X (2016). Robust adaptive sliding mode control for nonlinear four-wheel steering autonomous vehicles path tracking systems. In: 2016 IEEE 8th international power electronics and motion control conference (IPEMC-ECCE Asia), pp 2999–3006.  https://doi.org/10.1109/ipemc.2016.7512774
  19. 19.
    Norouzi A, Kazemi R, Azadi S (2018) Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive sliding mode control with fuzzy boundary layer. J Syst Control Eng 232(1):12–28.  https://doi.org/10.1177/0959651817733222 CrossRefGoogle Scholar
  20. 20.
    Lee SH, Chung CC (2017) Predictive control with sliding mode for autonomous driving vehicle lateral maneuvering. In: Proceedings of the American control conference, pp 2998–3003.  https://doi.org/10.23919/acc.2017.7963407
  21. 21.
    Rajamani R (2011) Vehicle dynamics and control. Springer, Berlin.  https://doi.org/10.1007/978-1-4614-1433-9 CrossRefzbMATHGoogle Scholar
  22. 22.
    Kwan C (1995) Sliding mode control of linear systems with mismatched uncertainties. Automatica 31:303–307.  https://doi.org/10.1016/0005-1098(94)00093-X MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938.  https://doi.org/10.1109/41.857974 CrossRefGoogle Scholar
  24. 24.
    Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169.  https://doi.org/10.1109/TIE.2012.2183841 CrossRefGoogle Scholar
  25. 25.
    Chen W (2003) Dynamic inversion control of missiles. J Guid Control Dyn 26(1):161–166.  https://doi.org/10.2514/2.5027 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Park J, Sandberg IW (1993) Approximation and radial-basis-function networks. Neural Comput 5:305–316.  https://doi.org/10.1162/neco.1993.5.2.305 CrossRefGoogle Scholar
  27. 27.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  28. 28.
    Mamdani EH (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7:1–13CrossRefGoogle Scholar
  29. 29.
    Yang Y, Yan Y (2016) Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerosp Sci Technol 54:208–217.  https://doi.org/10.1016/j.ast.2016.04.005 CrossRefGoogle Scholar
  30. 30.
    Wang LX (1997) A course in fuzzy system and control. Prentice Hall, Upper Saddle RiverGoogle Scholar
  31. 31.
    Khalil HK (1996) Nonlinear systems. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  32. 32.
    Santos CHFD, Cildoz MU, Terra MH, De Pieri ER (2018) Backstepping sliding mode control with functional tuning based on an instantaneous power approach applied to an underwater vehicle. Int J Syst Sci.  https://doi.org/10.1080/00207721.2018.1424966 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ackermann J, Guldner J, Sienel W et al (1995) Linear and nonlinear controller design for robust automatic steering. IEEE Trans Control Syst Technol 3(1):132–143CrossRefGoogle Scholar
  34. 34.
    Nielsen L, Kiencke U (2005) Automotive control systems. Springer, BerlinGoogle Scholar
  35. 35.
    Tagne G, Talj R, Charara A (2013). Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. In: Intelligent vehicles symposium (IV), June 2013 IEEE, pp 678–683Google Scholar
  36. 36.
    Tagne G, Talj R, Charara A (2015) Design of passivity-based controllers for lateral dynamics of intelligent vehicles. In: IEEE intelligent vehicles symposium, proceedings 2015–August: pp 1044–1049.  https://doi.org/10.1109/ivs.2015.7225822

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département d’InformatiqueUniversité des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO’MBOranAlgeria
  2. 2.Département d’InformatiqueUniversité Ibn KhaldounTiaretAlgeria

Personalised recommendations