Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN

  • Ruchika
  • Naveen KumarEmail author


Based on terminal sliding mode control, a finite time tracking control scheme, which utilize the advantage of fast terminal sliding mode control and neural network, is presented for robot manipulators. A modified form of sliding surface is considered by introducing two nonlinear terms in the sliding surface. Then a novel robust control scheme is proposed, which shows the strong robustness towards uncertainties and disturbance and as a result the finite time convergence of the tracking error is achieved. The radial basis function neural network is utilized to estimate the nonlinearity of the robot dynamics using update laws. Furthermore the adaptive compensator eliminates the need of knowledge about the upper bound of external disturbances and neural network reconstruction error. The numerical simulation result shows the effectiveness of proposed controller for the case of microbot type robot manipulator in a comparative manner.


Fast terminal sliding mode control RBF neural network Finite time convergence Reconstruction error Asymptotical stable 



This work is financially supported by the University Grants Commission(UGC) Sr. No. 2121340972 with Ref No. 22/12/2013 (ii) EU-V, New Delhi, India.


  1. 1.
    Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems. Fuzzy Sets Syst 154:208–260MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lewis FL, Dawson DM, Abadallah CT (2004) Robot manipulator and control. Taylor & Francis, LondonGoogle Scholar
  3. 3.
    Choi HS (2001) Robust control of robot manipulators with torque saturation using fuzzy logic. Robotica 19(6):631–639CrossRefGoogle Scholar
  4. 4.
    Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(4):49–64CrossRefGoogle Scholar
  5. 5.
    Slotine JJE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59CrossRefGoogle Scholar
  6. 6.
    Bailey E, Arapostathis A (1987) Simple sliding mode control applied to robot manipulators. Int J Control 25(4):1197–1209CrossRefzbMATHGoogle Scholar
  7. 7.
    Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans Ind Electron 59(8):3189–3198CrossRefGoogle Scholar
  8. 8.
    Moldoveanu F (2014) Sliding mode controller design for robot manipulators. Bull Transilv Univ Brasov 7(2):97–104Google Scholar
  9. 9.
    Edwards C, Spurgeon SK (1998) Sliding mode control theory and applications. Taylor & Francis, LondonCrossRefzbMATHGoogle Scholar
  10. 10.
    Lanzon A, Richards RJ (1999) Trajectory/force control of robot manipulators using sliding mode and adaptive control. In: Proceedings of the American control conference (San), vol 3, pp 1940–1944Google Scholar
  11. 11.
    Tan C, Yu XH, Man ZH (2010) Terminal sliding mode observers for a class of nonlinear systems. Automatica 46(8):1401–1404MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34(1):51–56MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mu C, Xu W, Sun C (2016) On switching manifold design for terminal sliding mode control. J Frankl Inst 353(7):1553–1572MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhao D, Li S, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yu XH, Man ZH (2002) Fast terminal sliding-mode control design for nonlinear systems. Circuits Syst I Fundam Theory 49(2):261–264MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lewis FL, Jagannathan S, Yesilidirek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, LondonGoogle Scholar
  17. 17.
    Panwar V, Kumar N, Sukavanam N, Borm JH (2012) Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput 12:216–227CrossRefGoogle Scholar
  18. 18.
    Kim J, Kumar N, Panwar V, Borm JH, Chai J (2012) Adaptive neural controller for visual serving of robot manipulators with camera-in-hand configuration. J Mech Sci Technol 26(8):2313–2323CrossRefGoogle Scholar
  19. 19.
    Kumar N, Borm JH, Panwar V, Chai J (2012) Tracking control of redundant robot manipulators using RBF neural network and an adaptive bound on disturbances. Int J Precis Eng Manuf 13:1377–1386CrossRefGoogle Scholar
  20. 20.
    Kumar N, Borm JH, Panwar V, Chai J (2014) Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Appl Math Comput 231:320–328MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang L, Chai T, Zhai L (2009) Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans Ind Electron 56(9):3296–3304CrossRefGoogle Scholar
  22. 22.
    Mahjoub M, Mnif F, Derbel N, Hamerlain M (2014) Radial-basis-functions neural network sliding mode control for underactuated mechanical systems. Int J Dyn Control 2(4):533–541CrossRefGoogle Scholar
  23. 23.
    Rahmani M, Ghanbari A, Ettefagh MM (2016) Hybrid neural network fractional integral terminal sliding mode control of an Inchworm robot manipulator. Mech Syst Signal Process 80:117–136CrossRefGoogle Scholar
  24. 24.
    Panwar V (2017) Wavelet neural network-based \(H_{\infty }\) trajectory tracking for robot manipulators using fast terminal sliding mode control. Robotica 35(7):1488–1503CrossRefGoogle Scholar
  25. 25.
    Tran M, Kang H (2017) Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing 228:213–240CrossRefGoogle Scholar
  26. 26.
    Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hong Y, Huang J, Xu Y (2001) On an output finite-time stabilization problem. IEEE Trans Autom Control 46(2):305–309MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Abramowitch M, Stegun IA (1972) Handbook of mathematical fuctions: with formulas, graphs, mathematica tables. Dover, New YorkGoogle Scholar
  29. 29.
    Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Horn R, Johnson C (2013) Matrix analysis. Cambridge University Press, New YorkzbMATHGoogle Scholar
  31. 31.
    Bhat SP, Bernstein DS (1997) Finite-time stability of homogeneous systems. Proc Am Control Conf 21(3):2513–2514CrossRefGoogle Scholar
  32. 32.
    Yang L, Yang J (2011) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21(11):1865–1879MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Park J, Sandberg JW (1991) Universal approximation using radial-basis function networks. Neural Comput 3:246–257CrossRefGoogle Scholar
  34. 34.
    Feng G, Chak CK (1994) Robot tracking in task space using neural networks. In: Proceedings of the IEEE conference on neural networks, pp 2854–2858Google Scholar
  35. 35.
    Holcomb T, Morari M (1991) Local training of radial basis function networks: towards solving the hidden unit problem. In: Proceedings of American control conference, pp 2331–2336Google Scholar
  36. 36.
    Wolovich W (1987) Robotics: basic analysis and design. Rinehart and Winston, St. LouisGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations