Robust fast finite-time sliding mode control for industrial robot manipulators

  • S. J. GambhireEmail author
  • K. S. Sri Kanth
  • G. M. Malvatkar
  • P. S. Londhe


In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.


Terminal sliding mode control Nonsingularity Disturbance estimator Robotic manipulator 


  1. 1.
    Mizanoor Rahman SM, Ikeura R (2016) Weight-prediction-based predictive optimal position and force controls of a power assist robotic system for object manipulation. IEEE Trans Ind Electron 63(9):5964–5975CrossRefGoogle Scholar
  2. 2.
    Zhao YM, Lin Y, Xi F, Guo S (2015) Calibration-based iterative learning control for path tracking of industrial robots. IEEE Trans Ind Electron 62(5):2921–2929CrossRefGoogle Scholar
  3. 3.
    Shin SY, Kim C (2015) Human-like motion generation and control for humanoid’s dual arm object manipulation. IEEE Trans Ind Electron 62(4):2265–2276CrossRefGoogle Scholar
  4. 4.
    Baghli FZ, El Bakkali L (2015) Design and simulation of robot manipulator position control system based on adaptive fuzzy PID controller. In: Zeghloul S, Laribi MA, Gazeau J-P (eds) Robotics and Mechatronics. Springer, Berlin, pp 243–250Google Scholar
  5. 5.
    Li Z, Yang K, Bogdan S, Bugong X (2013) On motion optimization of robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm. Int J Control Autom Syst 11(6):1266–1275CrossRefGoogle Scholar
  6. 6.
    Chiacchio P, Pierrot F, Sciavicco L, Siciliano B (1993) Robust design of independent joint controllers with experimentation on a high-speed parallel robot. IEEE Trans Ind Electron 40(4):393–403CrossRefGoogle Scholar
  7. 7.
    Dombre E, Khalil W (eds) (2007) Modeling, performance analysis and control of robot manipulators. ISTE, WashingtonGoogle Scholar
  8. 8.
    Kreutz K (1989) On manipulator control by exact linearization. IEEE Trans Autom Control 34(7):763–767MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Karimoddini A, Lin H (2014) Hierarchical hybrid symbolic robot motion planning and control. Asian J Control 17(1):23–33MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Poignet P, Gautier M (2000) Nonlinear model predictive control of a robot manipulator. In: 6th international workshop on advanced motion control proceedings. IEEEGoogle Scholar
  11. 11.
    Craig JJ (1986) Introduction to robotics: mechanics and control. Addison Wesley, BostonGoogle Scholar
  12. 12.
    Liu M (1999) Decentralized control of robot manipulators: nonlinear and adaptive approaches. IEEE Trans Autom Control 44(2):357–363MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lenarčič J, Husty ML (eds) (1998) Advances in robot kinematics: analysis and control. Springer, DordrechtzbMATHGoogle Scholar
  14. 14.
    Capisani LM, Ferrara, A, Magnani, L (2007) Second order sliding mode motion control of rigid robot manipulators. In: 2007 46th IEEE conference on decision and control. IEEEGoogle Scholar
  15. 15.
    Ferrara A, Magnani L (2006) Motion control of rigid robot manipulators via first and second order sliding modes. J Intell Robot Syst 48(1):23–36CrossRefGoogle Scholar
  16. 16.
    Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans Ind Electron 58(2):600–610CrossRefGoogle Scholar
  17. 17.
    Ehsan S (2010) Sliding mode control of robot manipulators via intelligent approaches. In: Advanced strategies for robot manipulators. SciyoGoogle Scholar
  18. 18.
    Lian R-J (2011) Intelligent controller for robotic motion control. IEEE Trans Ind Electron 58(11):5220–5230CrossRefGoogle Scholar
  19. 19.
    Plius MP, Yilmaz M, Seven U, Erbatur K (2012) Fuzzy controller scheduling for robotic manipulator force control. In: 2012 12th IEEE international workshop on advanced motion control (AMC). IEEEGoogle Scholar
  20. 20.
    Guo C, Simaan MA, Sun Z (2003) Neuro-fuzzy intelligent controller for ship roll motion stabilization. In: Proceedings of the 2003 IEEE international symposium on intelligent control ISIC-03. IEEEGoogle Scholar
  21. 21.
    Lee SY, Cho HS (2003) A fuzzy controller for an electro-hydraulic fin actuator using phase plane method. Control Eng Pract 11(6):697–708CrossRefGoogle Scholar
  22. 22.
    Ying H (1998) The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica 34(2):157–167MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    SLOTINE JJ, SASTRY SS (1983) Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. Int J Control 38(2):465–492CrossRefzbMATHGoogle Scholar
  24. 24.
    Venkataraman ST, Gulati S (1993) Control of nonlinear systems using terminal sliding modes. J Dyn Syst Meas Control 115(3):554CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhihong M, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control 39(12):2464–2469MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Feng Y, Yu X, Zhihong M (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Feng Y, Yu X, Han F (2013) On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6):1715–1722MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chen SY, Lin FJ (2011) Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system. IEEE Trans Control Syst Technol 19(3):636–643CrossRefGoogle Scholar
  29. 29.
    Jin M, Lee J, Chang PH, Choi C (2009) Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron 56(9):3593–3601CrossRefGoogle Scholar
  30. 30.
    Asl RM, Hagh YS, Palm R (2017) Robust control by adaptive non-singular terminal sliding mode. Eng Appl Artif Intell 59:205–217. ISSN 0952-1976.,
  31. 31.
    Yang L, Yang J (2010) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21(16):1865–1879MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Van M (2018) An enhanced robust fault tolerant control based on an adaptive fuzzy pid-nonsingular fast terminal sliding mode control for uncertain nonlinear systems. IEEE ASME Trans Mechatron. Google Scholar
  33. 33.
    Van M, Mavrovouniotis M, Ge SS (2018) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern Syst. Google Scholar
  34. 34.
    Van M, Ge SS, Ren H (2017) Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans Cybern 47(7):1681–1693. CrossRefGoogle Scholar
  35. 35.
    Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhao D, Li S, Gao F (2009) A new terminal sliding mode control for robotic manipulators. Int J Control 82(10):1804–1813MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Xu SS, Chen C, Wu Z (2015) Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans Ind Electron 62(6):3906–3913. Google Scholar
  38. 38.
    Yuh J (2000) Design and control of autonomous underwater robots: a survey. Auton Robots 8(1):7–24. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. J. Gambhire
    • 1
    Email author
  • K. S. Sri Kanth
    • 2
  • G. M. Malvatkar
    • 3
  • P. S. Londhe
    • 4
  1. 1.MANETMIT-ADT UniversityPuneIndia
  2. 2.Koneru Lakshmaiah Education FoundationVaddeswaram, GunturIndia
  3. 3.Government College of EngineeringJalgaonIndia
  4. 4.Government College of Engineering ChandrapurChandrapurIndia

Personalised recommendations