International Journal of Dynamics and Control

, Volume 7, Issue 1, pp 330–340

# Combination–combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control

• Mayank Srivastava
• Subir Das
Article

## Abstract

In the present article nonlinear control method is used for combination–combination phase synchronization among fractional order non-identical complex chaotic systems. The control functions are designed with the help of a new lemma and Lyapunov stability theory. The nonlinear control method is found to be very effective and convenient to achieve the said type of synchronization of the non-identical fractional order complex chaotic systems. Numerical simulations are carried out using Adams-Bashforth–Moulton method and the results are depicted through graphs for different particular cases.

## Keywords

Combination–combination phase synchronization Complex chaotic systems Fractional derivative Nonlinear control method

## Notes

### Acknowledgements

The authors are extending their heartfelt thanks to the reviewers for their valuable comments towards up-gradation of the revised manuscript.

## References

1. 1.
Bagley RL, Calico RA (1991) Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dynam. 14(2):304–311
2. 2.
Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1585–1593
3. 3.
Carpinteri A, Cornetti P, Kolwankar KM (2004) Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 21:623–632
4. 4.
Heaviside O (1971) Electromagnetic theory. Chelsea, New York
5. 5.
Sun HH, Abdelwahed AA, Onaral B (1984) Linear approximation for transfer function with a pole of fractional order. IEEE Trans Automat Control 29:441–444
6. 6.
Alligood KT, Sauer T, Yorke JA (1997) Chaos: an introduction to dynamical systems. Springer, Berlin
7. 7.
Srivastava M, Ansari SP, Agrawal SK, Das S, Leung AYT (2014) Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn 76:905–914
8. 8.
Erjaee GH, Taghvafard H (2011) Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun Nonlinear Sci Numer Simulat 16:4079–4088
9. 9.
Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22:549–554
10. 10.
Luo C, Wang X (2013) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71:241–257
11. 11.
Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–825
12. 12.
Lakshmanan M, Murali K (1996) Chaos in nonlinear oscillators: controlling and synchronization. World Scientific Pub. Co., Singapore
13. 13.
Murali K, Lakshmanan M (2003) Secure communication using a compound signal using sampled-data feedback. Appl Math Mech 11:1309–1315Google Scholar
14. 14.
Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399:354–359
15. 15.
Haung Y (2005) Chaoticity of some chemical attractors: a computer assisted proof. J Math Chem 38:107–117
16. 16.
Razminia A, Majd VJ, Baleanu D (2011) Chaotic incommensurate fractional order Rössler system: active control and synchronization Adv. in Differ Equ., 15.
17. 17.
Abd-Elouahab MS, Hamri NE, Wang J (2010) Chaos control of a fractional-order financial system math problems in engineering. ID 270646.
18. 18.
Hegazi AS, Ahmed E, Matouk AE (2013) On chaos control and synchronization of the commensurate fractional order Liu system. Commun Nonlinear Sci Numer Simulat 18:1193–1202
19. 19.
Wang XY, He YJ, Wang MJ (2009) Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal Theory Methods Appl 71:6126
20. 20.
Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199
21. 21.
Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82:3042–3045
22. 22.
Li GH (2007) Modified projective synchronization of chaotic system. Chaos, Solitons Fractals 32:1786–1790
23. 23.
Barajas-Ramirez JG, Chen G, Shieh LS (2003) Hybrid chaos synchronization. Int J Bifur Chaos 13:1197–1216
24. 24.
Liu Y, Davids P (2000) Dual synchronization of chaos. Phys Rev E 61:2176–2184
25. 25.
Sun J, Shen Y, Yi Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23:013140
26. 26.
Wu A, Zhang J (2014) Compound synchronization of fourth order memristor oscillator. Adv Differ Equ 2014:100–106
27. 27.
Zhang B, Deng F (2014) Double-compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn 77(4):1519–1530
28. 28.
Luo RZ, Wang YL, Deng SC (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21:043114
29. 29.
Runzi L, Yinglan W (2013) Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22:023109
30. 30.
Wu Z, Fu X (2013) Combination synchronization of three different order nonlinear systems using active back stepping design. Nonlinear Dyn 73:1863–1872
31. 31.
Sun JW, Shen Y, Zhang GD, Xu CJ, Cui GZ (2013) Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn 73:1211–1222
32. 32.
Lin H, Cai J, Wang J (2013) Finite-time combination-combination synchronization for hyperchaotic systems. J Chaos ID 304643.
33. 33.
Zhou X, Xiong L, Cai X (2014) Combination–combination synchronization of four nonlinear complex chaotic systems. Abstr Appl Anal ID 953265 1–14Google Scholar
34. 34.
Sun J, Shen Y, Wang X, Chen J (2014) Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 76:383–397
35. 35.
Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Reduced order projective and hybrid projective combination-combination synchronization of four chaotic Josephson junctions. J Chaos ID 282407:1–9
36. 36.
Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dyn 77:583–595
37. 37.
Singh AK, Yadav VK, Das S (2017) Dual combination synchronization of the fractional order complex chaotic systems. J Comput Nonlinear Dyn 12:011017-1–8Google Scholar
38. 38.
Yadav VK, Agrawal SK, Srivastava M, Das S (2015) Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method. Int J Dyn Control.
39. 39.
Das S, Srivastava M, Leung AYT (2013) Hybrid phase synchronization between identical and non-identical three-dimensional chaotic systems using the active control method. Nonlinear Dyn 73:2261–2272
40. 40.
Mahmoud GM, Bountis T, Al-Kashif MA, Aly SA (2009) Dynamical properties and synchronization of complex nonlinear equations for detuned lasers. Dyn Syst 24:63–79
41. 41.
Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam
42. 42.
Norelys AC, Manuel ADM, Javier AG (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simulat 19:2951–2957
43. 43.
Luo C, Wang XY (2013) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71:241–257
44. 44.
Liu XJ, Hong L, Yang LX (2014) Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dyn 75:589–602
45. 45.
Yadav VK, Srikanth N, Das S (2016) Dual function projective synchronization of fractional order complex chaotic systems. Optik 127:10527–10538
46. 46.
Singh AK, Yadav VK, Das (2016) Synchronization between fractional order complex chaotic systems. Int J Dyn Control.
47. 47.
Luo C, Wang XY (2014) Chaos generated from the fractional-order complex Chen system and its application to digital secure communication. Int J Mod Phys C 24:1350025

© Springer-Verlag GmbH Germany, part of Springer Nature 2018