Stability of dynamical behavior of a new hyper chaotic system in certain range and its hybrid projective synchronization behavior

Article
  • 9 Downloads

Abstract

This article gives an insight for important tools to study the stability of dynamical behavior of newly constructed hyper chaotic systems within some certain parameter range. Further, hybrid projective synchronization (HPS) of two identical new hyper chaotic systems is defined and scheme of HPS is developed by using tracking control method. A new hyper chaotic system has been constructed and then response system. Numerical simulations verify the effectiveness of this scheme, which has been performed by mathematica and MATLAB.

Keywords

Hybrid projective synchronization Chaotic systems and hyper chaos Tracking control method 

Mathematics Subject Classification

34D06 

References

  1. 1.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Pikovsky A, Rosenblum M, Kurths J (2002) “Synchronization: a universal concept”, nonlinear science. Cambridge University Press, CambridgeMATHGoogle Scholar
  3. 3.
    Glass L (2001) Synchronization and rhytheoremic processes in physiology. Nature 410:277CrossRefGoogle Scholar
  4. 4.
    Strogatz S (2003) Sync. Hyperion, New YorkGoogle Scholar
  5. 5.
    Khan A, Tripathi P (2013) Synchronization between a fractional order chaotic system and an integer order chaotic system. Nonlinear Dyn Syst Theory 13(4):425–436MathSciNetMATHGoogle Scholar
  6. 6.
    Liao TL, Lin SH (1999) Adaptive control and synchronization of Lorenz systems. J Frankl Inst 336:925–937MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen SH, Lu J (2002) Synchronization of an uncertain unified system via adaptive control. Chaos Solitons Fractals 14:643–647CrossRefMATHGoogle Scholar
  8. 8.
    Ge ZM, Chen YS (2005) Adaptive synchronization of unidirectional and mutual coupled chaotic systems. Chaos Solitons Fractals 26:881–888MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Liu S, Liu P (2011) Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal Real World Appl 12:30463055MathSciNetGoogle Scholar
  10. 10.
    Wang C, Ge SS (2001) Adaptive synchonizaion of uncertain chaotic systems via adaptive backstepping design. Chaos Solitons Fractals 12:1199–11206CrossRefMATHGoogle Scholar
  11. 11.
    Chen J, Liu H, Lu J, Zhang QJ (2011) Projective and lag synchronization of a novel hyperchaotic system via impulsive control. Commun Nonlinear Sci Numer Simul 16:2033–2040MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen HK (2005) Synchronization of two different chaotic system: a new system and each of the dynamical systems Lorenz, Chen and Lu. Chaos Solitons Fractals 25:1049–1056MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ho MC, Hung YC (2002) Synchronization two different systems by using generalized active control. Phys Lett A 301:424–428MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yassen MT (2005) Chaos synchronization between two different chaotic systems using active control. Chaos Solitons Fractals 23:131–140MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Park JH (2006) Chaos synchronization between two different chaotic dynamical systems. Chaos Solitons Fractals 27:549–554CrossRefMATHGoogle Scholar
  16. 16.
    Ge ZM, Yu TC, Chen YS (2003) Chaos synchronization of a horizontal platform system. J Sound Vib 268:731–749CrossRefGoogle Scholar
  17. 17.
    Wen GL, Xu D (2004) Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension. Phys Lett A 330:420–425CrossRefMATHGoogle Scholar
  18. 18.
    Hua M, Xua Z (2008) Adaptive feedback controller for projective synchronization. Nonlinear Anal Real World Appl 9:1253–1260MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu J, Chen SH, Lu JA (2003) Projective synchronization in a unified chaotic system and its control. Acta Phys Sin 52:1595–1599Google Scholar
  20. 20.
    Jia N, Wang T (2011) Chaos control and hybrid projective synchronization for a class of new chaotic systems. Comput Math Appl 62(12):4783–4795MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wanga S, Yu Y, Wen G (2014) Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Anal Hybrid Syst 11:129–138MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tripathi P, Khan A (2013) Hybrid projective synchronization between nonidentical fractional order chaotic systems. Int J Eng Innov Technol 3(2):41–49Google Scholar
  23. 23.
    Cenys A, Tamasevicius A, Baziliauskas A (2003) Hyperchaos in coupled Colpitts oscillators. Chaos, Solitons Fractals 7:349–353CrossRefMATHGoogle Scholar
  24. 24.
    Rabinovich MI, Fabrikant AL (1979) Stochastic self-modulation of waves in nonequilibrium media. Sov Phys JETP 50:311Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, D.S.C.University of DelhiNew DelhiIndia
  2. 2.Department of MathematicsUniversity of DelhiNew DelhiIndia
  3. 3.Department of Mathematics, S.B.S.C.University of DelhiNew DelhiIndia

Personalised recommendations