Skip to main content

Advertisement

Log in

Fuzzy scheduling of robust controllers for islanded DC microgrids applications

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In the present paper a decentralized control scheme that relies on sliding mode (SM) and high gain control methodologies to regulate the load voltage in buck-based islanded direct current (DC) microgrids is designed. First, the model of a buck-based islanded DC microgrid consisting of several Distributed Generation units interconnected through an arbitrary complex and meshed topology including rings is introduced. More precisely, the topology of the power network is represented by its corresponding incidence matrix, and in the model the power lines dynamics is considered. Moreover, it is assumed that the microgrid is affected by unknown load demand and unavoidable modelling uncertainties. A mixed strategy, employing both a third-order sliding mode (3-SM) control algorithm and a high gain control strategy, with a fuzzy scheduling is designed to solve the voltage control problem in a decentralized manner. Specifically, the high-gain control reduces the stress on the generator during abrupt reference changes, the 3-SM guarantees finite-time voltage regulation and strong robustness with respect to load variations. Fuzzy scheduling merges the two strategies. Finally, detailed simulation results confirm the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. For the sake of simplicity, the dependence of all the variables on time t is omitted throughout the paper.

  2. The relative degree is the minimum order \(\rho \) of the time derivative \(\sigma _i^{(\rho )}, i=1, \dots , n\), of the sliding variable associated to the i-th node in which the control \(u_i, i=1, \dots , n\), explicitly appears.

References

  1. Ackermann T, Andersson G, Söder L (2001) Distributed generation: a definition1. Electr Power Syst Res 57(3):195–204

    Article  Google Scholar 

  2. Pepermans G, Driesen J, Haeseldonckx D, Belmans R, D’haeseleer W (2005) Distributed generation: definition, benefits and issues. Energy Policy 33(6):787–798

    Article  Google Scholar 

  3. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  4. Carrasco JM, Franquelo LG, Bialasiewicz JT, Galvan E, PortilloGuisado RC, Prats MAM, Leon JI, Moreno-Alfonso N (2006) Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electron 53(4):1002–1016

    Article  Google Scholar 

  5. Liserre M, Sauter T, Hung JY (2010) Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind Electron Mag 4(1):18–37

    Article  Google Scholar 

  6. Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831

    Article  Google Scholar 

  7. Farhangi H (2010) The path of the smart grid. IEEE Power Energy Mag 8(1):18–28

    Article  MathSciNet  Google Scholar 

  8. Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94

    Article  Google Scholar 

  9. Lasseter R (2002) Microgrids. In: IEEE power engineering society winter meeting, vol 1, pp 305–308

  10. Lasseter R, Paigi P (2004) Microgrid: a conceptual solution. In: Proc. 35th IEEE power electron. specialists conf., Aachen, vol 6, pp 4285–4290

  11. Katiraei F, Iravani M, Lehn P (2005) Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans Power Deliv 20(1):248–257

    Article  Google Scholar 

  12. Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    Article  Google Scholar 

  13. Guerrero JM, Chandorkar M, Lee T-L, Loh PC (2013) Advanced control architectures for intelligent microgrids, part i: decentralized and hierarchical control. IEEE Trans Ind Electron 60(4):1254–1262

    Article  Google Scholar 

  14. Sadabadi MS, Shafiee Q, Karimi A (2016) Plug-and-play voltage stabilization in inverter-interfaced microgrids via a robust control strategy. IEEE Trans Control Syst Technol PP(99):1–11

    Google Scholar 

  15. Cucuzzella M, Incremona GP, Ferrara A (2015) Design of robust higher order sliding mode control for microgrids. IEEE J Emerg Sel Topics Circuits Syst 5(3):393–401

    Article  MATH  Google Scholar 

  16. Incremona GP, Cucuzzella M, Ferrara A (2016) Adaptive suboptimal second-order sliding mode control for microgrids. Int J Control 89(9):1849–1867

    Article  MathSciNet  MATH  Google Scholar 

  17. Cucuzzella M, Incremona GP, Ferrara A (2017) Decentralized sliding mode control of islanded ac microgrids with arbitrary topology. IEEE Trans Ind Electron 64(8):6706–6713

    Article  Google Scholar 

  18. Guida B, Cavallo A (2012) Supervised bidirectional dc/dc converter for intelligent fuel cell vehicles energy management. In: Electric Vehicle Conference (IEVC), 2012 IEEE International. IEEE. pp 1–5

  19. Canciello G, Cavallo A, Guida B (2017) Control of energy storage systems for aeronautic applications. J Control Sci Eng 2017:2458590

  20. Canciello G, Cavallo A, Guida B (2017) Robust control of aeronautical electrical generators for energy management applications. Int J Aerosp Eng 2017:1745154

  21. Canciello G, Russo A, Guida B, Cavallo A (2018) Supervisory control for energy storage system onboard aircraft. In: 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe). IEEE, pp 1–6

  22. Guida B, Cavallo A (2013) A petri net application for energy management in aeronautical networks. In: Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE. pp 1–6

  23. Guerrero JM, Vasquez JC, Matas J, de Vicuna LG, Castilla M (2011) Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172

    Article  Google Scholar 

  24. Justo JJ, Mwasilu F, Lee J, Jung J-W (2013) Ac-microgrids versus dc-microgrids with distributed energy resources: a review. Renew Sustain Energy Rev 24:387–405

    Article  Google Scholar 

  25. Rodriguez-Diaz E, Savaghebi M, Vasquez JC, Guerrero JM (2015) An overview of low voltage dc distribution systems for residential applications. In: 2015 IEEE 5th international conference on Consumer electronics—Berlin (ICCE-Berlin), pp 318–322

  26. Guida B, Rubino L, Marino P, Cavallo A (2010) Implementation of control and protection logics for a bidirectional dc/dc converter. In: Industrial Electronics (ISIE), 2010 IEEE International Symposium on. IEEE. pp 2696–2701

  27. Cucuzzella M, Rosti S, Cavallo A, Ferrara A (2017) Decentralized sliding mode voltage control in dc microgrids. In: Proc. American control conf, Seattle

  28. Cucuzzella M, Lazzari R, Trip S, Rosti S, Sandroni C, Ferrara A (2018) Sliding mode voltage control of boost converters in DC microgrids. Control Eng Pract 73:161–170

    Article  Google Scholar 

  29. Ferreira RAF, Braga HAC, Ferreira AA, Barbosa PG (2012) Analysis of voltage droop control method for dc microgrids with simulink: modelling and simulation. In: 2012 10th IEEE/IAS international conference on industry applications (INDUSCON), pp 1–6

  30. Cucuzzella M, Trip S, De Persis C, Cheng X, Ferrara A, van der Schaft A (2018) A robust consensus algorithm for current sharing and voltage regulation in DC microgrids. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2018.2834878

  31. Trip S, Cucuzzella M, Cheng X, Scherpen J (2019) Distributed averaging control for voltage regulation and current sharing in DC microgrids. IEEE Control Syst Lett 3(1):174–179

    Article  Google Scholar 

  32. Chen YK, Wu YC, Song CC, Chen YS (2013) Design and implementation of energy management system with fuzzy control for dc microgrid systems. IEEE Trans Power Electron 28(4):1563–1570

    Article  Google Scholar 

  33. Kakigano H, Miura Y, Ise T (2013) Distribution voltage control for dc microgrids using fuzzy control and gain-scheduling technique. IEEE Trans Power Electron 28(5):2246–2258

    Article  Google Scholar 

  34. Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of pv sources in a smart dc distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921

    Article  Google Scholar 

  35. Utkin VI (1992) Sliding modes in optimization and control problems. Springer, New York

    Book  MATH  Google Scholar 

  36. Edwards C, Spurgen SK (1998) Sliding mode control: theory and applications. Taylor and Francis, London

    Book  Google Scholar 

  37. Tan S-C, Lai YM, Cheung MKH, Tse CK (2005) On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans Power Electron 20(2):425–437

    Article  Google Scholar 

  38. Mahdavi J, Emadi A, Toliyat HA (1997) Application of state space averaging method to sliding mode control of pwm dc/dc converters. In: Industry applications conference, 1997. Thirty-second IAS annual meeting, IAS ’97., Conference record of the 1997 IEEE, vol 2, pp 820–827

  39. Spiazzi G, Mattavelli P, Rossetto L (1997) Sliding mode control of dc–dc converters. System 2:1

    Google Scholar 

  40. Bartolini G, Ferrara A, Usai E (1998) Chattering avoidance by second-order sliding mode control. IEEE Trans Autom Control 43(2):241–246

    Article  MathSciNet  MATH  Google Scholar 

  41. Dinuzzo F, Ferrara A (2009) Higher order sliding mode controllers with optimal reaching. IEEE Trans Autom Control 54(9):2126–2136

    Article  MathSciNet  MATH  Google Scholar 

  42. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9–10):924–941

    Article  MathSciNet  MATH  Google Scholar 

  43. Cavallo A, Natale C (2003) Output feedback control based on a high-order sliding manifold approach. IEEE Trans Autom Control 48(3):469–472

    Article  MathSciNet  MATH  Google Scholar 

  44. Cavallo A, Canciello G, Guida B (2017) Supervisory control of dc–dc bidirectional converter for advanced aeronautic applications. Int J Robust Nonlinear Control. http://dx.doi.org/10.1002/rnc.3851

  45. Cavallo A, Canciello G, Guida B, Kulsangcharoen P, Yeoh S, Rashed M, Bozhko S (2018) Multi-objective supervisory control for dc/dc converters in advanced aeronautic applications. Energies 11(11):3216

    Article  Google Scholar 

  46. Cavallo A, Canciello G, Guida B (2017) Energy storage system control for energy management in advanced aeronautic applications. Math Probl Eng 2017:4083132

    Article  MathSciNet  MATH  Google Scholar 

  47. Cavallo A, Guida B, Buonanno A, Sparaco E (2015) Smart buck-boost converter unit operations for aeronautical applications. In: 54rd IEEE conference on decision and control, CDC 2015, pp 4734–4739

  48. Cavallo A, Canciello G, Guida B (2017) Supervised control of buck-boost converters for aeronautical applications. Automatica 83:73–80

  49. Cavallo A, de Maria G, Nistri P (1999) Robust control design with integral action and limited rate control. IEEE Trans Autom Control 44(8):1569–1572

    Article  MathSciNet  MATH  Google Scholar 

  50. Fahmy M (2010) A fuzzy algorithm for scheduling non-periodic jobs on soft real-time single processor system. Ain Shams Eng J 1(1):31–38

    Article  Google Scholar 

  51. Plius MP, Yilmaz M, Seven U, Erbatur K (2012) Fuzzy controller scheduling for robotic manipulator force control. In: 2012 12th IEEE international workshop on advanced motion control (AMC), pp 1–8

  52. Syed FU, Kuang ML, Smith M, Okubo S, Ying H (2009) Fuzzy gain-scheduling proportional-integral control for improving engine power and speed behavior in a hybrid electric vehicle. IEEE Trans Veh Technol 58(1):69–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Canciello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canciello, G., Cavallo, A., Cucuzzella, M. et al. Fuzzy scheduling of robust controllers for islanded DC microgrids applications. Int. J. Dynam. Control 7, 690–700 (2019). https://doi.org/10.1007/s40435-018-00506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-00506-5

Keywords

Navigation