Composite non-linear feedback control using Mittag-Leffler function

  • Ujjwala ThakarEmail author
  • Vrunda Joshi
  • Vishwesh A. Vyawahare


Transient performance of any physical system is very important concern for the controller design of that system. Composite non-linear feedback control (CNF) is one of such controls with which optimum transient performance can be achieved. It has a combination of linear feedback law and non-linear feedback law. In the conventional CNF control, non-linear feedback law uses a decaying exponential function as a non-linear function. In the proposed modified CNF, this exponential function is replaced with Mittag-Leffler function (MLF) for the non-linear control law. Mittag-Leffler function which is one of the special functions from fractional calculus and it is the generalization of exponential function. By fine tuning the parameters in MLF, better control over damping ratio can be achieved. This improves the performance of the system further, giving lesser rise time, settling time and the percentage overshoot. The modern flight control application is used to demonstrate the effectiveness of CNF controller using MLF.


Composite non-linear feedback (CNF) control Flight control Fractional calculus Mittag-Leffler function (MLF) Tracking control 


  1. 1.
    Lin Z, Pachter M, Banda S (1998) Toward improvement of tracking performance nonlinear feedback for linear systems. Int J Control 70(1):1–11MathSciNetzbMATHGoogle Scholar
  2. 2.
    Lu T, Lan W (2018) Composite nonlinear feedback control for strict-feedback nonlinear systems with input saturation. Int J Control 91(11).
  3. 3.
    Lin D, Lan W (2015) Output feedback composite nonlinear feedback control for singular systems with input saturation. J Frankl Inst 352(1):384–398MathSciNetzbMATHGoogle Scholar
  4. 4.
    Turner MC, Postlethwaite I, Walker DJ (2000) Non-linear tracking control for multivariable constrained input linear systems. Int J Control 73(12):1160–1172MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen BM, Lee TH, Peng K, Venkataramanan V (2003) Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Trans Autom Control 48(3):427–439MathSciNetzbMATHGoogle Scholar
  6. 6.
    Qin Y, Sun W, Yeow JTW, Peng K, Venkataramanan V (2017) Integral sliding mode based optimal composite nonlinear feedback control for capacitive micromachined ultrasonic transducers (CMUTs) system. In: 36th Chinese control conference (CCC), pp 1323–1328Google Scholar
  7. 7.
    Pyrhonen V-P, Koivisto Hannu J (2016) Gain-scheduled composite nonlinear feedback control of an exothermic chemical reactor. In: European control conference (ECC), pp 67–73Google Scholar
  8. 8.
    Singh S, Purwar S, Kulkarni A (2017) Two term composite nonlinear feedback controller design for nonlinear time-delay systems. Trans Inst Meas Control 40(12):3424–3432Google Scholar
  9. 9.
    Mobayen S, Tchier F (2017) Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems. Nonlinear Dyn 87(3):1731–1747zbMATHGoogle Scholar
  10. 10.
    Venkataramanan V, Peng K, Chen BM, Lee TH (2003) Discrete-time composite nonlinear feedback control with an application in design of a hard disk drive servo system. IEEE Trans Control Syst Technol 11(1):16–23Google Scholar
  11. 11.
    Lan W, Chen BM, He Y (2005) Composite nonlinear feedback control for a class of nonlinear systems with input saturation. IFAC Proc Vol 38(1):622–627Google Scholar
  12. 12.
    Lan W, Thum CK, Chen BM (2010) A hard-disk-drive servo system design using composite nonlinear-feedback control with optimal nonlinear gain tuning methods. IEEE Trans Ind Electron 57(5):1735–1745Google Scholar
  13. 13.
    Cheng G, Peng K, Chen BM, Lee TH (2007) Improving transient performance in tracking general references using composite nonlinear feedback control and its application to high-speed-table positioning mechanism. IEEE Trans Ind Electron 54(2):1039–1051Google Scholar
  14. 14.
    Hasan MHC, Sam YM, Peng KM, Aripin MK (2014) Composite nonlinear feedback for vehicle active front steering. Appl Mech Mater 663:127–134Google Scholar
  15. 15.
    Cheng G, Chen BM, Peng K, Lee TH (2010) A MATLAB toolkit for composite nonlinear feedback control improving transient response in tracking control. J Control Theory Appl 8(3):271–279MathSciNetGoogle Scholar
  16. 16.
    Khalil HK (1996) Nonlinear systems. Prentice-Hall, Englewood CliffsGoogle Scholar
  17. 17.
    Vidyasagar M (2002) Nonlinear systems analysis, vol 42. SIAM, PhiladelphiazbMATHGoogle Scholar
  18. 18.
    Slotine J-JE, Li W (1991) Applied nonlinear control. Prantice-Hall, Englewood CliffszbMATHGoogle Scholar
  19. 19.
    Li Y, Chen YQ, Podlubny I (2009) Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969MathSciNetzbMATHGoogle Scholar
  20. 20.
    Liu S, Jiang W, Li X, Zhou X-F (2016) Lyapunov stability analysis of fractional nonlinear systems. Automatica 51:13–19MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jimin Y, Hua H, Zhou S, Lin X (2013) Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems. Automatica 49(6):1789–1803MathSciNetzbMATHGoogle Scholar
  22. 22.
    Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59(5):1810–1821 ElsevierMathSciNetzbMATHGoogle Scholar
  23. 23.
    Haubold HJ, Mathai AM, Saxena RK (2011) Mittag-Leffler functions and their applications. J Appl Math 2011:1–51MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hilfer R, Seybold HJ (2006) Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr Transforms Spec Funct 17(9):637–652 Taylor & FrancisMathSciNetzbMATHGoogle Scholar
  25. 25.
    Valério D, Machado JT (2014) On the numerical computation of the Mittag-Leffler function. Commun Nonlinear Sci Numer Simul 19(10):3419–3424MathSciNetGoogle Scholar
  26. 26.
    Yang X, Li C, Song Q, Chen J, Huang J (2018) Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons. Neural Netw 105:88–103Google Scholar
  27. 27.
    Guo-Cheng W, Baleanu D, Huang L-L (2018) Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl Math Lett 82:71–78MathSciNetzbMATHGoogle Scholar
  28. 28.
    Xuhuan W (2018) Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients. Adv Differ Equ 1:1–16MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pratap A, Raja R, Sowmiya C, Bagdasar O, Cao J, Rajchakit G (2018) Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. Neural Netw 103:128–141Google Scholar
  30. 30.
    Gorenflo R, Loutchko J, Luchko Y (2002) Computation of the Mittag-Leffler function \(E_{\alpha, \beta }\) (z) and its derivative. Fract Calc Appl Anal 5(2002):491–518MathSciNetzbMATHGoogle Scholar
  31. 31.
    Chen M, Shao S, Shi P (2017) Robust adaptive control for fractional-order systems with disturbance and saturation. Wiley, New YorkGoogle Scholar
  32. 32.
    Sheng D, Wei Y, Cheng S, Shuai J (2017) Adaptive backstepping control for fractional order systems with input saturation. J Frankl Inst 354(5):2245–2268MathSciNetzbMATHGoogle Scholar
  33. 33.
    Luo J (2014) State-feedback control for fractional-order nonlinear systems subject to input saturation. Math Problems Eng 2014:1–8MathSciNetGoogle Scholar
  34. 34.
    Monje CA, Chen DY, Vinagre BM (2010) Fractional-order systems and control: fundamentals and applications. Springer, LondonzbMATHGoogle Scholar
  35. 35.
    Rudin W et al (1964) Principles of mathematical analysis, vol 3. McGraw-Hill, New YorkzbMATHGoogle Scholar
  36. 36.
    Gorenflo R, Kilbas AA, Mainardi F, Rogosin Sergei V (2014) Mittag-Leffler functions, related topics and applications. Springer, BerlinzbMATHGoogle Scholar
  37. 37.
    Magin RL (2006) Fractional calculus in bioengineering. Begell House, ReddingGoogle Scholar
  38. 38.
    Blakelock JH (1991) Automatic control of aircraft and missiles. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ujjwala Thakar
    • 1
    Email author
  • Vrunda Joshi
    • 1
  • Vishwesh A. Vyawahare
    • 2
  1. 1.PVG’s COETPuneIndia
  2. 2.RAITNavi MumbaiIndia

Personalised recommendations