Skip to main content
Log in

Dynamic response and analysis of cracked beam subjected to transit mass

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In the existing research work, the dynamic response of a cracked cantilever beam with the presence of multiple transverse open cracks under a traversing mass has been discussed. The response of the traversing mass structure has been calculated at numerous mass magnitude and speed with random crack depth at different positions of cracks. The principal equation of motion of the structure subjected to moving mass has been developed and solved using Duhamel integral technique. The consequence of cracks in the structures along with moving mass has been examined. The effects of size and position of cracks on the structure during the movement of the traversing mass across the beam and the effects of speed on the dynamic response of the cracked beam have been investigated analytically and computationally. For the verifications of the numerical results, the laboratory tests have been conducted for the traversing mass-structural systems with various damage configurations of the structure. The results obtained from the numerical formulation have been compared with those of laboratory tests and converged well with the applied computational method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akin JE, Mofld M (1989) Numerical solution for the response of beams with moving mass. J Struct Eng 15(1):120–131

    Article  Google Scholar 

  2. Al-Said SM (2008) Crack detection in stepped beam carrying slowly moving mass. J Vib Control 14(12):1903–1920

    Article  MathSciNet  MATH  Google Scholar 

  3. Ariaei A, Ziaei-Rad S, Ghayour M (2009) Vibration analysis of beams with open and breathing cracks subjected to moving masses. J Sound Vib 326:709–724

    Article  Google Scholar 

  4. Attar M, Karrech A, Regenauer-Lieb K (2016) A lattice spring model for dynamic analysis of damaged beam-type structures under moving loads. Eur J Mech A Solids 60:196–207

    Article  MathSciNet  Google Scholar 

  5. Bilello C, Bergman LA (2004) Vibration of damaged beams under a moving mass: theory and experimental validation. J Sound Vib 274:567–582

    Article  Google Scholar 

  6. Chen G, Qian L, Yin Q (2014) Dynamic analysis of a Timoshenko beam subjected to an accelerating mass using spectral element method. J Shock Vib, Article ID 768209

  7. Chopra AK (2011) Dynamics of structures: theory and application to earthquake engineering. Prentice-Hall, Upper Saddle River

    Google Scholar 

  8. Collins GW II (2003) Fundamental numerical methods and data analysis. George W, Collins II, NASA ADS, US

  9. Das A, Parhi D R (2012) Miltiple damage identification of beam structure using vibration analysis and artificial intelligence techniques, Ph.D. Thesis, NIT, Rourkela, India

  10. Fryba L (1999) Vibration of solids and structures, 3rd edn. Thomas Telford Ltd, Prague

    MATH  Google Scholar 

  11. Fan Y, Wang H (2015) Nonlinear vibration of matrix cracked laminated beams containing carbon nano tube reinforced composite layers in thermal environments. Compos Struct 124:35–43

    Article  Google Scholar 

  12. Fan Y, Wang H (2017) Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nano tube reinforced composite layers. Nonlinear Dyn 89:1863–1876

    Article  Google Scholar 

  13. Hou Z, Xia H, Wang Y, Zhang Y, Zhang T (2015) Dynamic analysis and model test on steel-concrete composite beams under moving loads. Steel Compos Struct 18(3):565–582

    Article  Google Scholar 

  14. Jena SP, Parhi DR, Mishra D (2015) Comparative study on cracked beam with different types of cracks carrying moving mass. Struct Eng Mech 56(5):797–811

    Article  Google Scholar 

  15. Jena SP, Parhi DR (2017) Response analysis of cracked structure subjected to transit mass—a parametric study. J Vibroeng 19(5):3243–3254

    Article  Google Scholar 

  16. Michaltsos GT, Kounadis AN (2001) The effects of centripetal and Coriolis forces on the dynamic response of light bridges under moving loads. J Vibc Control 7:315–326

    Article  MATH  Google Scholar 

  17. Lal M, Moffatt D (1982) Picard’s successive approximation for non-linear two-point boundary-value problems. J Comput Appl Math 8(4):233–237

    Article  MathSciNet  MATH  Google Scholar 

  18. Law SS, Lu ZR (2005) Crack identification in beam from dynamic responses. J Sound Vib 285:967–987

    Article  Google Scholar 

  19. Lin H, Chang SC (2006) Forced responses of cracked cantilever beam subjected to a concentrated moving load. Int J Mech Sci 48:1456–1463

    Article  MATH  Google Scholar 

  20. Lin JH (2006) Response of a bridge to a moving vehicle load. Can J Civil Eng 33(1):49–57

    Article  MathSciNet  Google Scholar 

  21. Jun L, Law SS, Hao H (2013) Improved damage identification in bridge structures subject to moving loads, numerical and experimental studies. Int J Mech Sci 74:99–111

    Article  Google Scholar 

  22. Michaltos G, Sophianopoulos D, Kounadis AN (1996) The effect of moving mass and other parameters on the dynamic response of a simply supported beam. J Sound Vib 191(3):357–361

    Article  MATH  Google Scholar 

  23. Mahmoud MA (2001) Stress intensity factors for single and double edge cracks in a simple beam subject to a moving load. Int J Fract 111:151–161

    Article  Google Scholar 

  24. Mahmoud MA (2001) Effect of cracks on the dynamic response of a simple beam subject to a moving load. IMechE J Rail Rapid Transit 215:207–215

    Article  Google Scholar 

  25. Mahmoud MA, Abouzaid MA (2002) Dynamic response of a beam with a crack subject to a moving mass. J Sound Vib 256(4):591–603

    Article  Google Scholar 

  26. Majka M, Hartnett M (2008) Effect of speed, load and damping on the dynamic response of railway bridge and vehicle. Comput Struct 86:556–572

    Article  Google Scholar 

  27. Nguyen KV (2013) Comparison studies of open and breathing crack detections of a beam-like bridge subjected to a moving vehicle. J Eng Struct 51:306–314

    Article  Google Scholar 

  28. Olsson M (1991) On the fundamental moving load problem. J Sound Vib 145(2):299–307

    Article  Google Scholar 

  29. Pala Y, Reis M (2012) Dynamic response of a cracked beam under a moving mass load. J Eng Mech 139(9):1229–1238

    Article  Google Scholar 

  30. Paixio A, Fortunato E, Calcada R (2015) The effect of differential settlements on the dynamic response of the train-track system, a numerical study. Eng Struct 88:216–224

    Article  Google Scholar 

  31. Simsek M (2010) Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos Struct 92:904–917

    Article  Google Scholar 

  32. Thomson WT (2002) Theory of vibration with application, 3rd edn. CBS Publishers, New Delhi

    Google Scholar 

  33. Yoon HI, Son IS (2005) Influence of tip mass on dynamic behavior of cracked cantilever pipe conveying fluid with moving mass. J Mech Sci Technol 19(9):1731–1740

    Article  Google Scholar 

  34. Yoon HK, Son IS (2006) Dynamic behavior of cracked simply supported pipe conveying fluid with moving mass. J Sound Vib 292:941–953

    Article  Google Scholar 

  35. Yoon HI, Son IS, Ahn SJ (2007) Free vibration analysis of Euler–Bernoulli beam with double cracks. J Mech Sci Technol 21:476–485

    Article  Google Scholar 

  36. Yang J, Chen Y, Xiang Y, Jia XL (2008) Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. J Sound Vib 312:166–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti P. Jena.

Appendices

Appendix A

Crack analysis on the vibration characteristics of cantilever beam:

A cracked cantilever beam (Fig 9.) of length ‘L’, width ‘B’, thickness ‘H’ with multiple cracks of crack depth ‘\(d_{1,2,3}\)’, at distance of ‘\(L_{1,2,3} \)’ from the fixed end is considered for the analysis.

The analysis of the cracked beam is carried out as follows

  • u(xt) \(=\) Longitudinal vibration displacement functions of the crack section

  • y(xt) \(=\) Transverse vibration displacement functions of the crack section.

One can define the normalized function for the cracked structure with multiple cracks in normalized form as

$$\begin{aligned} \bar{{u}}_1 (\bar{{x}})= & {} A_1 \cos (\bar{{K}}_u \bar{{x}})+A_2 \sin (\bar{{K}}_u \bar{{x}}) \end{aligned}$$
(A-1)
$$\begin{aligned} \bar{{u}}_2 (\bar{{x}})= & {} A_3 \cos (\bar{{K}}_u \bar{{x}})+A_4 \sin (\bar{{K}}_u \bar{{x}}) \end{aligned}$$
(A-2)
$$\begin{aligned} \bar{{u}}_3 (\bar{{x}})= & {} A_5 \cos (\bar{{K}}_u \bar{{x}})+A_6 \sin (\bar{{K}}_u \bar{{x}}) \end{aligned}$$
(A-3)
$$\begin{aligned} \bar{{u}}_4 (\bar{{x}})= & {} A_7 \cos (\bar{{K}}_u \bar{{x}})+A_8 \sin (\bar{{K}}_u \bar{{x}}) \end{aligned}$$
(A-4)
$$\begin{aligned} y_1 (x)= & {} A_9 \cosh (\bar{{K}}_y \bar{{x}})+A_{10} \sinh (\bar{{K}}_y \bar{{x}})\nonumber \\&+A_{11} \cos (\bar{{K}}_y \bar{{x}})+A_{12} \sin (\bar{{K}}_y \bar{{x}}) \end{aligned}$$
(A-5)
$$\begin{aligned} y_2 (x)= & {} A_{13} \cosh (\bar{{K}}_y \bar{{x}})+A_{14} \sinh (\bar{{K}}_y \bar{{x}})\nonumber \\&+A_{15} \cos (\bar{{K}}_y \bar{{x}})+A_{16} \sin (\bar{{K}}_y \bar{{x}}) \end{aligned}$$
(A-6)
$$\begin{aligned} y_3 (x)= & {} A_{17} \cosh (\bar{{K}}_y \bar{{x}})+A_{18} \sinh (\bar{{K}}_y \bar{{x}})\nonumber \\&+A_{19} \cos (\bar{{K}}_y \bar{{x}}) +A_{20} \sin (\bar{{K}}_y \bar{{x}}) \end{aligned}$$
(A-7)
$$\begin{aligned} y_4 (x)= & {} A_{21} \cosh (\bar{{K}}_y \bar{{x}})+A_{22} \sinh (\bar{{K}}_y \bar{{x}})\nonumber \\&+A_{23} \cos (\bar{{K}}_y \bar{{x}}) +A_{24} \sin (\bar{{K}}_y \bar{{x}}) \end{aligned}$$
(A-8)

The normalized form may be expressed as

\(\eta _{1,2,3} =L_{1,2,3} /L=\)Relative location of cracks.

$$\begin{aligned} \bar{{x}}= & {} x/L,\bar{{u}}=u/L,\bar{{y}}=y/L,\bar{{t}}=t/L\\ \bar{{K}}= & {} \omega L/C_u , C_u =\left( {E/\rho } \right) ^{1/2}, \\ \bar{{K}}_y= & {} \left( {{\omega L}/{C_y }} \right) ^{1/2}, C_y =\left( {{EI}/m} \right) ^{1/2}, m=\rho A \end{aligned}$$

The different values of ‘\(A' (A_i (i=1,24))\) can be determined from the different end conditions.

The different end conditions of the cantilever beam are as follows

$$\begin{aligned} \bar{{u}}_1 (0)=0,\bar{{y}}_1 (0)=0,\bar{{y}}_1 ^{\prime }(0)=0 \end{aligned}$$
(A-9)

At the free end \(x=L\), then \(\bar{{x}}=x/L=1\)

$$\begin{aligned} \bar{{u}}_4 ^{\prime }(1)=0,\bar{{y}}_4 ^{{\prime }{\prime }}(1)=0,\bar{{y}}_4 ^{{\prime }{\prime }{\prime }}(1)=0 \end{aligned}$$
(A-10)

At the crack segment

$$\begin{aligned} \bar{{u}}_1 (\eta _1 )= & {} \bar{{u}}_2 (\eta _1 ), \bar{{u}}_2 (\eta _2 )=\bar{{u}}_3 (\eta _2 ), \bar{{u}}_3 (\eta _3 )=\bar{{u}}_4 (\eta _3 ) \nonumber \\\end{aligned}$$
(A-11)
$$\begin{aligned} \bar{{y}}_1 (\eta _1 )= & {} \bar{{y}}_2 (\eta _1 ), \bar{{y}}_2 (\eta _2 )=\bar{{y}}_3 (\eta _2 ), \bar{{y}}_3 (\eta _3 )=\bar{{y}}_4 (\eta _3 ) \nonumber \\\end{aligned}$$
(A-12)
$$\begin{aligned} \bar{{y}}_1 ^{{\prime }{\prime }}(\eta _1 )= & {} \bar{{y}}_2 ^{\prime \prime }(\eta _1 ),\bar{{y}}_2 ^{{\prime }{\prime }}(\eta _2 )=\bar{{y}}_3 ^{\prime \prime }(\eta _2 ),\bar{{y}}_3 ^{{\prime }{\prime }}(\eta _3 )=\bar{{y}}_4 ^{{\prime }{\prime }}(\eta _3 ) \nonumber \\\end{aligned}$$
(A-13)
$$\begin{aligned} \bar{{y}}_1^{{\prime }{\prime }{\prime }}(\eta _1 )= & {} \bar{{y}}_2 ^{{\prime } {\prime }{\prime }}(\eta _1 ), \bar{{y}}_2 ^{{\prime }{\prime }{\prime }}(\eta _2 )=\bar{{y}}_3 ^{{\prime }{\prime }{\prime }}(\eta _2 ), \bar{{y}}_3 ^{{\prime }{\prime }{\prime }}(\eta _3 )=\bar{{y}}_4 ^{\prime \prime \prime }(\eta _3 )\nonumber \\ \end{aligned}$$
(A-14)

At the first crack segment also

$$\begin{aligned} AE\frac{du_1 (L_1 )}{dx}= & {} K_{11} ^{1}\left[ {u_2 (L_1 )-u_1 (L_1 )} \right] \nonumber \\&+K_{12} ^{1}\left[ {\frac{dy_2 (L_1 )}{dx}-\frac{dy_1 (L_1 )}{dx}} \right] \end{aligned}$$
(A-15)

Similarly for the second and third crack sections, one can express

$$\begin{aligned} AE\frac{du_2 (L_2 )}{dx}= & {} K_{11} ^{2}\left[ {u_3 (L_2 )-u_2 (L_2 )} \right] \nonumber \\&+K_{12} ^{2}\left[ {\frac{dy_3 (L_2 )}{dx}-\frac{dy_2 (L_2 )}{dx}} \right] \end{aligned}$$
(A-16)
$$\begin{aligned} AE\frac{du_3 (L_3 )}{dx}= & {} K_{11} ^{3}\left[ {u_4 (L_3 )-u_3 (L_3 )} \right] \nonumber \\&+K_{12} ^{3}\left[ {\frac{dy_4 (L_3 )}{dx}-\frac{dy_3 (L_3 )}{dx}} \right] \end{aligned}$$
(A-17)

Equation (A-15) is for discontinuity due to axial deformation before and after the first crack.

Similarly due to the discontinuity of slope to the before and after of the first crack section, one can express

$$\begin{aligned} EI\frac{d^{2}y_1 (L_1 )}{dx^{2}}= & {} K_{21} ^{1}[u_2 (L_1 )-u_1 (L_1 )]\nonumber \\&+K_{22} ^{1}\left[ {\frac{dy_2 (L_1 )}{dx}-\frac{dy_1 (L_1 )}{dx}} \right] \end{aligned}$$
(A-18)

Similarly for the second and third crack sections, one can express

$$\begin{aligned} EI\frac{d^{2}y_2 (L_2 )}{dx^{2}}= & {} K_{21} ^{2}[u_3 (L_2 )-u_2 (L_2 )]\nonumber \\&+K_{22} ^{2}\left[ {\frac{dy_3 (L_2 )}{dx}-\frac{dy_2 (L_2 )}{dx}} \right] \end{aligned}$$
(A-19)
$$\begin{aligned} EI\frac{d^{2}y_3 (L_3 )}{dx^{2}}= & {} K_{21} ^{3}[u_4 (L_3 )-u_3 (L_3 )]\nonumber \\&+K_{22} ^{3}\left[ {\frac{dy_4 (L_3 )}{dx}-\frac{dy_3 (L_3 )}{dx}} \right] \end{aligned}$$
(A-20)

By inversing the compliance matrix, the local flexibility matrix element ‘\(K_{ij} \)’ may be determined.

One can determine the compliance matrix element by considering the strain energy at the crack location-

$$\begin{aligned} C_{ij} =\frac{\partial ^{2}}{\partial P_i \partial P_j }\int \limits _0^{d_1 } {J(a)dd} \end{aligned}$$
(A-21)

where \(J(a)=\) Strain energy density function

\(P_{i=1} =\)Axial force, \(P_{i=2}=\)Bending moment

From the analysis of cracks, the dimensionless compliance factors can be given us using the following relations:

$$\begin{aligned} \bar{{C}}_{11}= & {} C_{11} \left( {\frac{BE}{2\pi }} \right) , \bar{{C}}_{12} =C_{12} \left( {\frac{BEH}{12\pi }} \right) ,\nonumber \\ \bar{{C}}_{22}= & {} C_{22} \left( {\frac{BH^{2}E}{72\pi }} \right) \hbox { and }\bar{{C}}_{12} =\bar{{C}}_{21} \end{aligned}$$
(A-22)

where BH and E are the breadth, width and modulus of elasticity of the mild steel beam structure respectively.

The compliance matrix can be given as

$$\begin{aligned} C=\left( {{\begin{array}{ll} {C_{11} }&{} {C_{12} } \\ {C_{21} }&{} {C_{22} } \\ \end{array} }} \right) \end{aligned}$$
(A-23)

The inverse of compliance matrix will form the local stiffness matrix i.e.

$$\begin{aligned} K=\left( {{\begin{array}{ll} {K_{11} }&{} {K_{12} } \\ {K_{21} }&{} {K_{22} } \\ \end{array} }} \right) =\left( {{\begin{array}{ll} {C_{11} }&{} {C_{12} } \\ {C_{21} }&{} {C_{22} } \\ \end{array} }} \right) ^{-1} \end{aligned}$$
(A-24)

The stiffness matrix for first, second and third cracks can be given as:

$$\begin{aligned} {K}^{\prime }= & {} \left( {{\begin{array}{ll} {C_{11} ^{\prime }}&{} {C_{12} ^{\prime }} \\ {C_{21} ^{\prime }}&{} {C_{22} ^{\prime }} \\ \end{array}}} \right) ^{-1}=\left( {{\begin{array}{ll} {K_{11} ^{\prime }}&{} {K_{12} ^{\prime }} \\ {K_{21} ^{\prime }}&{} {K_{22} ^{\prime }} \\ \end{array}}} \right) \nonumber \\ {K}^{{\prime }{\prime }}= & {} \left( {{\begin{array}{ll} {C_{11} ^{\prime \prime }}&{} {C_{12} ^{{\prime }{\prime }}} \\ {C_{21} ^{\prime \prime }}&{} {C_{22} ^{{\prime }{\prime }}} \\ \end{array}}} \right) ^{-1}=\left( {{\begin{array}{ll} {K_{11} ^{\prime \prime }}&{} {K_{12} ^{{\prime }{\prime }}} \\ {K_{21} ^{\prime \prime }}&{} {K_{22} ^{{\prime }{\prime }}} \\ \end{array}}} \right) \nonumber \\ {K}^{{\prime }{\prime }{\prime }}= & {} \left( {{\begin{array}{ll} {C_{11} ^{\prime \prime \prime }}&{} {C_{12} ^{\prime \prime \prime }} \\ {C_{21} ^{\prime \prime \prime }}&{} {C_{22} ^{\prime \prime \prime }} \\ \end{array}}} \right) ^{-1}=\left( {{\begin{array}{ll} {K_{11} ^{\prime \prime \prime }}&{} {K_{12} ^{\prime \prime \prime }} \\ {K_{21} ^{\prime \prime \prime }}&{} {K_{22} ^{\prime \prime \prime }} \\ \end{array}}} \right) \end{aligned}$$
(A-25)

where \({K}^{\prime }\), \({K}^{{\prime }{\prime }}\) and \({K}^{{\prime }{\prime }{\prime }}\) are the stiffness matrix for first, second and third crack locations respectively.

For each of the stiffness matrix-\(K_{12} =K_{21} \). For uncoupled case \(K_{12} =K_{21} =0\), Where as for couple case \(K_{12} =K_{21} \ne 0\)

Appendix B

The Eigen functions are orthogonal not orthonormal. Applying the condition of orthonormality

$$\begin{aligned} \left\| {Y_n (x)} \right\|= & {} \left( {\int \limits _0^L {Y_n ^{2}} dx} \right) ^{1/2}=\left( \int \limits _0^{L_1 } Y_{n1} ^{2}dx+\int \limits _{L_1 }^{L_2 } {Y_{n2} ^{2}dx}\right. \nonumber \\&\left. +\int \limits _{L_2 }^{L_3 } {Y_{n3} ^{2}dx+\int \limits _{L_3 }^L {Y_{n4} ^{2}} } dx \right) ^{1/2}=1 \end{aligned}$$
(B-1)

To make the terms normalized in right part of Eq. (5), the constant coefficients A’s in Eq. 4a–d for Eigen functions should be replaced as

$$\begin{aligned} A= & {} \left( {1\Bigg /{\int \limits _0^{L_1 } {\left[ {\frac{Y_{n1} (x)}{A_{n1} }} \right] } ^{2}dx+\int \limits _{L_1 }^{L_2 } {\left[ {\frac{Y_{n2} (x)}{A_{n1} }} \right] } ^{2}dx}}\right. \nonumber \\&\left. +\int \limits _{L_2 }^{L_3 } {\left[ {\frac{Y_{n3} (x)}{A_{n1} }} \right] } ^{2}dx +\int \limits _{L_3 }^L {\left[ {\frac{Y_{n4} (x)}{A_{n1} }} \right] } ^{2}dx \right) ^{1/2} \end{aligned}$$
(B-2)

One can express the force between the beam and mass as-

$$\begin{aligned} f_m (x,t)=\left\{ {\begin{array}{ll} Mg, &{}x=\beta \\ 0, &{} x\ne \beta \\ \end{array}} \right\} \end{aligned}$$
(B-3)

Using the properties of Dirac delta function, one can express

$$\begin{aligned} f_m \left( {x,t} \right) =Mg\delta \left( {x-\beta } \right) \end{aligned}$$
(B-4)

The Fourier transformation of the function can be written as-

$$\begin{aligned} f_m \left( {x,t} \right) =\sum _{n=1}^\infty {A_n \sin \left( {\frac{n\pi }{L}x} \right) } \end{aligned}$$
(B-5)

Multiplying \(\sin \left( {\frac{k\pi }{L}x} \right) \) on both sides of Eq. (B-5) and integrating it over the entire beam length, one can state the newly formed equation as-

$$\begin{aligned}&\int \limits _0^L {f_m \left( {x,t} \right) \sin \left( {\frac{k\pi }{L}x} \right) dx} \nonumber \\&\quad =\sum _{n=1}^\infty {A_n \int \limits _0^L {\sin \left( {\frac{n\pi }{L}x} \right) \sin \left( {\frac{k\pi }{L}x} \right) } dx} \end{aligned}$$
(B-6)

where \(\hbox {n}, \hbox {k}=\) Number of the Eigen functions.

$$\begin{aligned} \int \limits _0^L {\sin \left( {\frac{n\pi }{L}x} \right) \sin \left( {\frac{k\pi }{L}x} \right) } dx=\left\{ {\begin{array}{ll} \frac{L}{2}, &{}n=k \\ 0, &{}n\ne k \\ \end{array}} \right\} \end{aligned}$$
(B-7)

Then

$$\begin{aligned}&A_{n=} \frac{2}{L}\int \limits _0^L {f_m (x,t)\sin \left( {\frac{n\pi }{L}x} \right) } dx \end{aligned}$$
(B-8)
$$\begin{aligned}&A_{n=} \frac{2Mg}{L}\int \limits _0^L {\delta (x-\beta )\sin \left( {\frac{n\pi }{L}x} \right) } dx \end{aligned}$$
(B-9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.P., Parhi, D.R. Dynamic response and analysis of cracked beam subjected to transit mass. Int. J. Dynam. Control 6, 961–972 (2018). https://doi.org/10.1007/s40435-017-0361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0361-3

Keywords

Navigation