Advertisement

Effect of the interaction between tool and workpiece modes on turning with round inserts

  • Firas A. Khasawneh
  • Andreas Otto
Article
  • 115 Downloads

Abstract

In this paper we investigate the effect of the tool-workpiece mode interaction on the stability of a flexible-tool, flexible-workpiece turning process. The workpiece dynamics are modeled by classical beam theory while for the tool we consider a description in terms of eigenmodes with an arbitrary orientation. The focus here is on elucidating the coupling effects due to the flexibility of both structures. Specifically, we show how the tool location along the workpiece and the dynamics of both the workpiece and the tool affect stability. Another contribution of this paper is the utilization of a novel analytical force model for cutting with round inserts. Using this force model, we further show that when round inserts are present, commonly used frequency domain methods can no longer be utilized to capture the system stability. Consequently, we use the spectral element approach, a highly-efficient time-domain approach, for studying the system stability.

Keywords

Machining Stability Time-domain Turning 

References

  1. 1.
    Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineering 205:199–203Google Scholar
  2. 2.
    Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. doi: 10.1016/j.ijmachtools.2011.01.001 CrossRefGoogle Scholar
  3. 3.
    Arnaud L, Gonzalo O, Seguy S, Jauregi H, Peigne G (2011) Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol 54(5–8):479–488. doi: 10.1007/s00170-010-2976-9 CrossRefGoogle Scholar
  4. 4.
    Gang L (2009) Study on deformation of titanium thin-walled part in milling process. J Mater Proc Technol 209(6):2788–2793CrossRefGoogle Scholar
  5. 5.
    Mehdi K, Rigal J, Play D (2002) Dynamic behavior of a thin-walled cylindrical workpiece during the turning process, part 1: cutting process simulation. J Manuf Sci Eng 124(3):562–568. doi: 10.1115/1.1431260 CrossRefGoogle Scholar
  6. 6.
    Yu SD, Shah V (2009) Theoretical and experimental studies of chatter in turning for uniform and stepped workpieces. J Vib Acoust 130(6):061,005CrossRefGoogle Scholar
  7. 7.
    Sutherland JW, DeVor RE (1986) An improved method for cutting force and surface error prediction in flexible end milling systems. J Manuf Sci Eng 108(4):269–279. doi: 10.1115/1.3187077 Google Scholar
  8. 8.
    Davies M, Balachandran B (2000) Impact dynamics in milling of thin-walled structures. Nonlinear Dyn 22(4):375–392. doi: 10.1023/A:1008364405411 CrossRefzbMATHGoogle Scholar
  9. 9.
    Ratchev S, Liu S, Huang W, Becker A (2004) A flexible force model for end milling of low-rigidity parts. J Mater Process Technol 153:134–138. doi: 10.1016/j.jmatprotec.2004.04.300 CrossRefGoogle Scholar
  10. 10.
    Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann 44(1):357–362CrossRefGoogle Scholar
  11. 11.
    Lan JVL, Marty A, Debongnie JF (2007) Providing stability maps for milling operations. Int J Mach Tools Manuf 47(9):1493–1496CrossRefGoogle Scholar
  12. 12.
    Budak E (2006) Analytical models for high performance milling. Part i: cutting forces, structural deformations and tolerance integrity. Int J Mach Tools Manuf 46(12–13):1478–1488. doi: 10.1016/j.ijmachtools.2005.09.009 CrossRefGoogle Scholar
  13. 13.
    Tongyue W, Ning H, Liang L (2010) Stability of milling of thin-walled workpiece. In: 2010 international conference on mechanic automation and control engineering (MACE), pp 3408–3411. doi: 10.1109/MACE.2010.5536868
  14. 14.
    Wanner B, Eynian M, Beno T, Pejryd L (2012) Process stability strategies in milling of thin-walled inconel 718. In: AIP conference proceedings, vol 1431, no 1, pp 465–472. doi: 10.1063/1.4707597
  15. 15.
    Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Influence of material removal on the dynamic behavior of thin-walled structures in peripheral milling. Mach Sci Technol 10(3):275–287CrossRefGoogle Scholar
  16. 16.
    Bravo U, Altuzarra O, de Lacalle LL, Sanchez J, Campa F (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680CrossRefGoogle Scholar
  17. 17.
    Chen C, Tsao Y (2006) A stability analysis of turning a tailstock supported flexible work-piece. Int J Mach Tools Manuf 46(1):18–25. doi: 10.1016/j.ijmachtools.2005.04.002 CrossRefGoogle Scholar
  18. 18.
    Chen CK, Tsao YM (2006) A stability analysis of regenerative chatter in turning process without using tailstock. Int J Adv Manuf Technol 29(7–8):648–654CrossRefGoogle Scholar
  19. 19.
    Vela-Martinez L, Jauregui-Correa J, Rubio-Cerda E, Herrera-Ruiz G, Lozano-Guzmï£.n A (2008) Analysis of compliance between the cutting tool and the workpiece on the stability of a turning process. Int J Mach Tools Manuf 48(9):1054–1062 Cited By (since 1996)19CrossRefGoogle Scholar
  20. 20.
    Khasawneh FA, Bobrenkov OA, Mann BP, Butcher EA (2012) Investigation of period-doubling islands in milling with simultaneously engaged helical flutes. J Vib Acoust 134(2):021,008. doi: 10.1115/1.4005022 CrossRefGoogle Scholar
  21. 21.
    Patel BR, Mann BP, Young KA (2008) Uncharted islands of chatter instability in milling. Int J Mach Tools Manuf 48:124–134CrossRefGoogle Scholar
  22. 22.
    Szalai R, Stépán G (2006) Lobes and lenses in the stability chart of interrupted turning. J Comput Nonlinear Dyn 1:205–211CrossRefGoogle Scholar
  23. 23.
    Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35–44. doi: 10.1016/j.cirpj.2008.06.003 CrossRefGoogle Scholar
  24. 24.
    Insperger T, Barton DA, Stepan G (2008) Criticality of hopf bifurcation in state-dependent delay model of turning processes. Int J Nonlinear Mech 43(2):140–149. doi: 10.1016/j.ijnonlinmec.2007.11.002 CrossRefzbMATHGoogle Scholar
  25. 25.
    Insperger T, Stepan G (2004) Stability analysis of turning with periodic spindle speed modulation via semidiscretization. J Vib Control 12:1835–1855. doi: 10.1177/1077546304044891 zbMATHGoogle Scholar
  26. 26.
    Bobrenkov O, Khasawneh F, Butcher E, Mann B (2010) Analysis of milling dynamics for simultaneously engaged cutting teeth. J Sound Vib 329(5):585–606. doi: 10.1016/j.jsv.2009.09.032 CrossRefGoogle Scholar
  27. 27.
    Butcher E, Bobrenkov O, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn 4(3):031,003CrossRefGoogle Scholar
  28. 28.
    Totis G, Albertelli P, Sortino M, Monno M (2014) Efficient evaluation of process stability in milling with spindle speed variation by using the Chebyshev collocation method. J Sound Vib 333(3):646–668. doi: 10.1016/j.jsv.2013.09.043 CrossRefGoogle Scholar
  29. 29.
    Insperger T, Mann BP, Stépán G, Bayly PV (2003) Stability of up-milling and down-milling. Part 1: alternative analytical methods. Int J Mach Tools Manuf 43:25–34CrossRefGoogle Scholar
  30. 30.
    Khasawneh FA, Mann B, Insperger T, Stépán G (2009) Increased stability of low-speed turning through a distributed force and continuous delay model. J Comput Nonlinear Dyn 4(4):041,003CrossRefGoogle Scholar
  31. 31.
    Mann BP, Bayly PV, Davies MA, Halley JE (2004) Limit cycles, bifurcations, and accuracy of the milling process. J Sound Vib 277:31–48CrossRefGoogle Scholar
  32. 32.
    Song Q, Ai X, Tang W (2011) Prediction of simultaneous dynamic stability limit of time-variable parameters system in thin-walled workpiece high-speed milling processes. Int J Adv Manuf Technol 55(9–12):883–889CrossRefGoogle Scholar
  33. 33.
    Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55:503–518MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods 61:117–141MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Insperger T, Stepan G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313:334–341CrossRefGoogle Scholar
  36. 36.
    Eksioglu C, Kilic Z, Altintas Y (2012) Discrete-time prediction of chatter stability, cutting forces, and surface location errors in flexible milling systems. J Manuf Sci Eng 134(6):061,006CrossRefGoogle Scholar
  37. 37.
    Khasawneh FA, Mann BP (2011) A spectral element approach for the stability of delay systems. Int J Numer Methods Eng 87(6):566–592. doi: 10.1002/nme.3122 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yavari A, Sarkani S, Jr EM (2000) On applications of generalized functions to beam bending problems. Int J Solids Struct 37(40):5675–5705. doi: 10.1016/S0020-7683(99)00271-1 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Li H, Song G, Hou J, Li S, Wen B (2013) A stability analysis of turning process considering the workpiece as a timoshenko beam. J Vibroeng 15(4):1927–1939 Cited By (since 1996)0Google Scholar
  40. 40.
    Altintaş Y (2000) Manufacturing automation, 1st edn. Cambridge University Press, New York. doi: 10.2277/0521659736 Google Scholar
  41. 41.
    Otto A, Khasawneh F, Radons G (2015) Position-dependent stability analysis of turning with tool and workpiece compliance. Int J Adv Manuf Technol 79(9–12):1453–1463. doi: 10.1007/s00170-015-6929-1 CrossRefGoogle Scholar
  42. 42.
    Otto A, Rauh S, Kolouch M, Radons G (2014) Extension of tlusty’s law for the identification of chatter stability lobes in multi-dimensional cutting processes. Int J Mach Tools Manuf 82:50–58CrossRefGoogle Scholar
  43. 43.
    Law M, Altintas Y, Phani AS (2013) Rapid evaluation and optimization of machine tools with position-dependent stability. Int J Mach Tools Manuf 68:81–90. doi: 10.1016/j.ijmachtools.2013.02.003 CrossRefGoogle Scholar
  44. 44.
    Law,M, Phani AS, Altintas Y (2013) Position-dependent multibody dynamic modeling of machine tools based on improved reduced order models. J Manuf Sci Eng 135(2):021,008. doi: 10.1115/1.4023453 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Institute for PhysicsTU ChemnitzChemnitzGermany

Personalised recommendations