Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints

  • Billel Meghni
  • Djalel Dib
  • Ahmad Taher Azar
  • Abdallah Saadoun
Article

Abstract

One of the major factors that can increase the efficiency of wind turbines (WTs) is the simultaneous control of the different parts in several operating area. The main problem associated with control design in wind generator is the presence of asymmetric in the dynamic model of the system, which makes a generic supervisory control scheme for the power management of WT complicated. Consequently, supervisory controller can be utilized as the main building block of a wind farm controller (offshore), which meets the grid code requirements and can increased the efficiency and protection of WTs in (region II and III) at the same time. This paper proposes a new effective adaptive supervisory controller for the optimal management and protection simultaneously of a hybrid WT, in both regions (II and III). To this end, the second order sliding mode with the adaptive gain super-twisting control law and fuzzy logic control are used in the machine side, batteries side and grid side converters, to achieve four control objectives: (1) control of the rotor speed to track the optimal value; (2) adaptive control (commutative mode) in order to maximum power point tracking (MPPT) or power limit in various regions; (3)regulate the average DC link voltage near to its nominal value;(4) ensure: a smooth regulation with high quality of power supply injected into the grid, a satisfactory power factor correction and a high harmonic performance in relation to the AC source and eliminating the chattering effect. Results of extensive simulation studies prove that the proposed supervisory control system guarantees to track reference signals with a high harmonic performance despite external disturbance uncertainties.

Keywords

Supervisory control Optimal management FLC Adaptive control Super-twisting control Power limit 

References

  1. 1.
    Nikolova S, Causevski A, Al-Salaymeh A (2013) Optimal operation of conventional power plants in power system with integrated renewable energy sources. Energy Convers Manag 65:697–703CrossRefGoogle Scholar
  2. 2.
    Zou Y, Elbuluk ME, Sozer Y (2013) Simulation comparisons and implementation of induction generator wind power systems. IEEE Trans Ind Appl 49(3):1119–1128CrossRefGoogle Scholar
  3. 3.
    Carranza O, Figueres E, Garcerá G, Gonzalez-Medina R (2013) Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator. Appl Energy 103:522–538CrossRefGoogle Scholar
  4. 4.
    Aissaoui AG, Tahour A, Essounbouli N, Nollet F, Abid M, Chergui MI (2013) A fuzzy-PI control to extract an optimal power from wind turbine. Energy Convers Manag 65:688–696CrossRefGoogle Scholar
  5. 5.
    Abdullah MA, Yatim AHM, Tan CW et al (2012) A review of maximum power point tracking algorithms for wind energy systems. Renew Sustain Energy Rev 16(5):3220–3227CrossRefGoogle Scholar
  6. 6.
    Jaramillo-Lopez F, Kenne G, Francoise Lamnabhi-Lagarrigue (2016) A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renew Energy 86:38–48CrossRefGoogle Scholar
  7. 7.
    Syed IM, Venkatesh B, Wu B, Nassif AB (2012) Two-layer control scheme for a supercapacitor energy storage system coupled to a doubly fed induction generator. Electr Power Syst Res 86:76–83CrossRefGoogle Scholar
  8. 8.
    Domínguez-García JL, Gomis-Bellmunt O, Bianchi FD, Sumper A (2012) Power oscillation damping supported by wind power: a review. Renew Sustain Energy Rev 16(7):4994–5006CrossRefMATHGoogle Scholar
  9. 9.
    Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN (2015) Review of energy storage system for wind power integration support. Appl Energy 137:545–553CrossRefGoogle Scholar
  10. 10.
    Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems. Springer, BerlinCrossRefMATHGoogle Scholar
  11. 11.
    Abdeddaim S, Betka A (2013) Optimal tracking and robust power control of the DFIG wind turbine. Int J Electr Power Energy Syst 49:234–242CrossRefGoogle Scholar
  12. 12.
    Gao R, Gao Z (2016) Pitch control for wind turbine systems using optimization, estimation and compensation. Renew Energy 91:501–515CrossRefGoogle Scholar
  13. 13.
    Kumar A, Verma V (2016) Photovoltaic-grid hybrid power fed pump drive operation for curbing the intermittency in PV power generation with grid side limited power conditioning. Int J Electr Power Energy Syst 82:409–419CrossRefGoogle Scholar
  14. 14.
    Yin X, Lin Y, Li W et al (2015) Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. ISA Trans 58:629–634CrossRefGoogle Scholar
  15. 15.
    Saravanakumar R, Jena D (2015a) Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine. Int J Electr Power Energy Syst 69:421–429CrossRefGoogle Scholar
  16. 16.
    Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077CrossRefGoogle Scholar
  17. 17.
    Ramesh T, Panda AK, Kumar SS (2015) Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive. ISA Trans 57:262–275CrossRefGoogle Scholar
  18. 18.
    Thirusakthimurugan P, Dananjayan P (2007) A novel robust speed controller scheme for PMBLDC motor. ISA Trans 46(4):471–477CrossRefGoogle Scholar
  19. 19.
    Pichan M, Rastegar H, Monfared M (2013) Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems. Energy 51:154–162CrossRefGoogle Scholar
  20. 20.
    Li H, Jiahui Wang, Lam H et al (2016) Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans Syst Man Cybern Syst 46(12):1654–1663CrossRefGoogle Scholar
  21. 21.
    Li H, Wang J, Shi P (2016) Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans Fuzzy Syst 24(6):1282–1293CrossRefGoogle Scholar
  22. 22.
    Uhlen K, Foss BA, Gjøsæter OB (1994) Robust control and analysis of a wind-diesel hybrid power plant. IEEE Trans Energy Convers 9(4):701–708CrossRefMATHGoogle Scholar
  23. 23.
    Evangelista C, Valenciaga F, Puleston P (2013) Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Trans Energy Convers 28(3):682–689CrossRefGoogle Scholar
  24. 24.
    Li H, Gao H, Shi P et al (2014) Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7):1825–1834MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li H, Shi P, Yao D et al (2016) Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64:133–142MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Meghni B, Dib D, Azar AT (2016) A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput Appl 1–18. doi: 10.1007/s00521-015-2161-z
  27. 27.
    Assareh E, Biglari M (2015) A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renew Sustain Energy Rev 51:1023–1037CrossRefGoogle Scholar
  28. 28.
    Witczak P, Patan K, Witczak M, Puig V, Korbicz J (2015) A neural network-based robust unknown input observer design: application to wind turbine. IFAC Pap OnLine 48(21):263–270CrossRefGoogle Scholar
  29. 29.
    Ata R (2015) Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49:534CrossRefGoogle Scholar
  30. 30.
    Suganthi L, Iniyan S, Samuel AA (2015) Applications of fuzzy logic in renewable energy systems—a review. Renew Sustain Energy Rev 48:585–607CrossRefGoogle Scholar
  31. 31.
    Banerjee A, Mukherjee V, Ghoshal SP (2014) Intelligent fuzzy-based reactive power compensation of an isolated hybrid power system. Int J Electr Power Energy Syst 57:164–177CrossRefGoogle Scholar
  32. 32.
    Castillo O, Melin P (2014) A review on interval type-2 fuzzy logic applications in intelligent control. Inf Sci 279:615–631MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mérida J, Aguilar LT, Dávila J (2014) Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renew Energy 71:715–728CrossRefGoogle Scholar
  34. 34.
    Hong C-M, Huang C-H, Cheng F-S (2014) Sliding mode control for variable-speed wind turbine generation systems using artificial neural network. Energy Procedia 61:1626–1629CrossRefGoogle Scholar
  35. 35.
    Benbouzid M, Beltran B, Amirat Y, Yao G, Han J, Mangel H (2014) Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Trans 53(3):827–833CrossRefGoogle Scholar
  36. 36.
    Liu J, Lin W, Alsaadi F, Hayat T (2015) Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique. Neurocomputing 168:145–151CrossRefGoogle Scholar
  37. 37.
    Evangelista CA, Valenciaga F, Puleston P (2012) Multivariable 2-sliding mode control for a wind energy system based on a double fed induction generator. Int J Hydrogen Energy 37(13):10070–10075CrossRefGoogle Scholar
  38. 38.
    Eltamaly AM, Farh HM (2013) Maximum power extraction from wind energy system based on fuzzy logic control. Electr Power Syst Res 97:144–150CrossRefGoogle Scholar
  39. 39.
    Meghni B, Saadoun A, Dib D, Amirat Y (2015) Effective MPPT technique and robust power control of the PMSG wind turbine. IEEJ Trans Electr Electron Eng 10(6):619–627CrossRefGoogle Scholar
  40. 40.
    Sarrias R, Fernández LM, García CA, Jurado F (2012) Coordinate operation of power sources in a doubly-fed induction generator wind turbine/battery hybrid power system. J Power Sources 205:354–366CrossRefGoogle Scholar
  41. 41.
    Sarrias-Mena R, Fernández-Ramírez LM, García-Vázquez CA, Jurado F (2014) Improving grid integration of wind turbines by using secondary batteries. Renew Sustain Energy Rev 34:194–207CrossRefGoogle Scholar
  42. 42.
    Sharma P, Sulkowski W, Hoff B (2013) Dynamic stability study of an isolated wind–diesel hybrid power system with wind power generation using IG, PMIG and PMSG: a comparison. Int J Electr Power Energy Syst 53:857–866CrossRefGoogle Scholar
  43. 43.
    Liu J, Meng H, Hu Y, Lin Z, Wang W (2015) A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Convers Manag 101:738–748CrossRefGoogle Scholar
  44. 44.
    Nasiri M, Milimonfared J, Fathi SH (2014) Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines. Energy Convers Manag 86:892–900CrossRefGoogle Scholar
  45. 45.
    Daili Y, Gaubert J-P, Rahmani L (2015) Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Convers Manag 97:298–306CrossRefGoogle Scholar
  46. 46.
    Kortabarria I, Andreu J, de Alegría IM, Jiménez J, Gárate JI, Robles E (2014) A novel adaptative maximum power point tracking algorithm for small wind turbines. Renew Energy 63:785–796CrossRefGoogle Scholar
  47. 47.
    Hong C-M, Chen C-H, Tu C-S (2013) Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors. Energy Convers Manag 69:58–67CrossRefGoogle Scholar
  48. 48.
    Narayana M, Putrus GA, Jovanovic M, Leung PS, McDonald S (2012) Generic maximum power point tracking controller for small-scale wind turbines. Renew Energy 44:72–79CrossRefGoogle Scholar
  49. 49.
    Yin M, Li G, Zhou M, Zhao C (2007) Modeling of the wind turbine with a permanent magnet synchronous generator for integration. In IEEE Power Engineering Society general meeting, pp 1–6Google Scholar
  50. 50.
    Jain B, Jain S, Nema RK (2015) Control strategies of grid interfaced wind energy conversion system: an overview. Renew Sustain Energy Rev 47:983–996CrossRefGoogle Scholar
  51. 51.
    Benelghali S, El Hachemi Benbouzid M, Charpentier JF, Ahmed-Ali T, Munteanu I (2011) Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans Ind Electron 58(1):118–126CrossRefGoogle Scholar
  52. 52.
    Rafiq M, Rehman S, Rehman F, Butt QR, Awan I (2012) A second order sliding mode control design of a switched reluctance motor using super twisting algorithm. Simul Model Pract Theory 25:106–117CrossRefGoogle Scholar
  53. 53.
    Soler J et al (2005) Analog low cost maximum power point tracking PWM circuit for DC loads. In: Proceedings of the fifth IASTED international conference on power and energy systems, Benalmadena, Spain, June 15–17Google Scholar
  54. 54.
    Gkavanoudis SI, Demoulias CS (2014) A combined fault ride-through and power smoothing control method for full-converter wind turbines employing supercapacitor energy storage system. Electr Power Syst Res 106:62–72CrossRefGoogle Scholar
  55. 55.
    Pena R, Cardenas R, Proboste J, Asher G, Clare J (2008) Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Trans Ind Electron 55(1):330–339CrossRefGoogle Scholar
  56. 56.
    Tapia G, Tapia A, Ostolaza JX (2007) Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Trans Energy Convers 22(2):488–498CrossRefGoogle Scholar
  57. 57.
    Azar AT (2012) Overview of type-2 fuzzy logic systems. Int J Fuzzy Syst Appl 2(4):1–28CrossRefGoogle Scholar
  58. 58.
    Azar AT (2010) Fuzzy systems. IN-TECH, Vienna. ISBN: 978-953-7619-92-3Google Scholar
  59. 59.
    Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. In: Advances in computational intelligence and robotics (ACIR) book series. IGI Global, USAGoogle Scholar
  60. 60.
    Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. In: Studies in computational intelligence, vol 575, Springer, GermanyGoogle Scholar
  61. 61.
    Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, BerlinMATHGoogle Scholar
  62. 62.
    Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations. In: Studies in fuzziness and soft computing, vol 319. Springer, GermanyGoogle Scholar
  63. 63.
    Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. Complex system modelling and control through intelligent soft computations. Springer, Berlin, pp 1–44Google Scholar
  64. 64.
    Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Berlin, pp 1–42. doi: 10.1007/978-3-319-11173-5_1 Google Scholar
  65. 65.
    Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Berlin, pp 97–132. doi: 10.1007/978-3-319-13132-06 Google Scholar
  66. 66.
    Mekki H, Boukhetala D, Azar AT (2015) Sliding modes for fault tolerant control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence book Series, vol 576. Springer, Berlin, pp 407–433. doi: 10.1007/978-3-319-11173-5_15 Google Scholar
  67. 67.
    Luo Y, Chen Y (2012) Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica 48(9):2159–2167MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Ebrahimkhani S (2016) Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Trans 63:343–354CrossRefGoogle Scholar
  69. 69.
    Munteanu I, Bacha S, Bratcu AI, Guiraud J, Roye D (2008) Energy-reliability optimization of wind energy conversion systems by sliding mode control. IEEE Trans Energy Convers 23(3):975–985CrossRefGoogle Scholar
  70. 70.
    Beltran B, Ahmed-Ali T, Benbouzid MEH (2008) Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans Energy Convers 23(2):551–558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Billel Meghni
    • 1
  • Djalel Dib
    • 2
  • Ahmad Taher Azar
    • 3
    • 5
  • Abdallah Saadoun
    • 4
  1. 1.Department of Electrical Engineering, Faculty of Applied ScienceUniversity of Kasdi MerbahOuarglaAlgeria
  2. 2.Electrical Engineering DepartmentUniversity LarbiTebessiTebessaAlgeria
  3. 3.Faculty of Computers and InformationBenha University, BanhaAl QalyubiyahEgypt
  4. 4.Department of ElectronicsUniversity of Badji MokhtarAnnabaAlgeria
  5. 5.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt

Personalised recommendations