Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A morphing metastructure concept combining shape memory alloy wires and permanent magnets for multistable behavior

  • 46 Accesses

Abstract

This article presents a novel morphing unit cell concept which relies on the combination of shape memory alloy wires for actuation and permanent magnets to enable multistability. Two distinct applications are investigated experimentally, consisting in a morphing beam metastructure made with three unit cells and a variable camber airfoil metastructure having six unit cells in the chord-wise direction. Tests are performed to assess the influence of the permanent magnets on the morphing behavior of the two referred metastructures. It is verified that the permanent magnets are able to provide new stable equilibrium configurations to the metastructure and to reduce the time necessary for morphing. Another interesting feature, which enables the reduction in energy consumption, is that, due to the magnetic interactions, the thermal activation of the SMA wires can be ceased once an equilibrium configuration is achieved. The paper describes the design premises, evaluates its limitations and devises future improvements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

References

  1. 1.

    Rodriguez A (2007) Morphing aircraft technology survey. In: Proceedings of the 45th AIAA aerospace sciences meeting and exhibit, pp 1–16. https://doi.org/10.2514/6.2007-1258

  2. 2.

    Thill C, Etches J, Bond I, Potter K, Weaver P (2008) Morphing skins. Aeronaut J 112(1129):117–139. https://doi.org/10.1017/S0001924000002062

  3. 3.

    Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22(9):823–877. https://doi.org/10.1177/1045389X11414084

  4. 4.

    Gomez JC, Garcia E (2011) Morphing unmanned aerial vehicles. Smart Mater Struct 20(10):103001–1–103001–16. https://doi.org/10.1088/0964-1726/20/10/103001

  5. 5.

    Lachenal X, Daynes S, Weaver PM (2013) Review of morphing concepts and materials for wind turbine blade applications. Wind Energy 16(2):283–307. https://doi.org/10.1002/we.531

  6. 6.

    Weisshaar TA (2013) Morphing aircraft systems: historical perspectives and future challenges. J Aircr 50(2):337–353. https://doi.org/10.2514/1.C031456

  7. 7.

    Barbarino S, Saavedra Flores EI, Ajaj RM, Dayyani I , Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23(6):063001–1–063001–19. https://doi.org/10.1088/0964-1726/23/6/063001

  8. 8.

    Dayyani I, Shaw AD, Saavedra Flores EI, Friswell MI (2015) The mechanics of composite corrugated structures: a review with applications in morphing aircraft. Compos Struct 133:358–380. https://doi.org/10.1016/j.compstruct.2015.07.099

  9. 9.

    Emam S A, Inman DJ (2015) A review on bistable composite laminates for morphing and energy harvesting. Appl Mech Rev 67(6):060803–1–060803–15. https://doi.org/10.1115/1.4032037

  10. 10.

    Sun J, Guan Q, Liu Y, Leng J (2016) Morphing aircraft based on smart materials and structures: a state-of-the-art review. J Intell Mater Syst Struct 27(17):2289–2312. https://doi.org/10.1177/1045389X16629569

  11. 11.

    Friswell MI (2014) Morphing aircraft: an improbable dream? In: Proceedings of the ASME 2014 conference on smart materials, adaptive structures and intelligent systems, pp 7754–1–7754–7. https://doi.org/10.1115/SMASIS2014-7754

  12. 12.

    Leo DJ (2007) Engineering analysis of smart material systems. Wiley, Hoboken

  13. 13.

    Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691. https://doi.org/10.1590/S0100-879X2003000600001

  14. 14.

    Morgan NB (2004) Medical shape memory alloy applications: the market and its products. Mater Sci Eng A 378(1):16–23. https://doi.org/10.1016/j.msea.2003.10.326

  15. 15.

    Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metal 2011:501483–1–501483–15. https://doi.org/10.1155/2011/501483

  16. 16.

    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552. https://doi.org/10.1243/09544100JAERO211

  17. 17.

    Kheirikhah MM, Rabiee S, Edalat ME (2010) A review of shape memory alloy actuators in robotics. In: RoboCup 2010: robot soccer world cup XIV, pp 206–217. https://doi.org/10.1007/978-3-642-20217-9_18

  18. 18.

    Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

  19. 19.

    Diaconu CG, Weaver PM, Mattioni F (2008) Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin Walled Struct 46(6):689–701. https://doi.org/10.1016/j.tws.2007.11.002

  20. 20.

    Mattioni F, Weaver PM, Potter KD, Friswell MI (2008) The application of thermally induced multistable composites to morphing aircraft structures. In: Proceedings of SPIE, vol 6930, pp 693012–1–693012–11. https://doi.org/10.1117/12.776226

  21. 21.

    Arrieta AF, Wagg DJ, Neild SA (2011) Dynamic snap-through for morphing of bi-stable composite plates. J Intell Mater Syst Struct 22(2):103–112. https://doi.org/10.1177/1045389X10390248

  22. 22.

    Lee AJ, Moosavian A, Inman DJ (2017) A piezoelectrically generated bistable laminate for morphing. Mater Lett 190:123–126. https://doi.org/10.1016/j.matlet.2017.01.005

  23. 23.

    Hufenbach W, Gude M, Kroll L (2002) Design of multistable composites for application in adaptive structures. Compos Sci Technol 62(16):2201–2207. https://doi.org/10.1016/S0266-3538(02)00159-8

  24. 24.

    Daynes S, Potter KD, Weaver PM (2008) Bistable prestressed buckled laminates. Compos Sci Technol 68(15):3431–3437. https://doi.org/10.1016/j.compscitech.2008.09.036

  25. 25.

    Mattioni F, Weaver PM, Potter KD, Friswell MI (2008) Analysis of thermally induced multistable composites. Int J Solids Struct 45(2):657–675. https://doi.org/10.1016/j.ijsolstr.2007.08.031

  26. 26.

    Dano M-L, Hyer MW (2003) SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. Int J Solids Struct 40(22):5949–5972. https://doi.org/10.1016/s0020-7683(03)00374-3

  27. 27.

    Lee J-G, Ryu J, Lee H, Cho M (2014) Saddle-shaped, bistable morphing panel with shape memory alloy spring actuator. Smart Mater Struct 23(7):074013–1–074013–9. https://doi.org/10.1088/0964-1726/23/7/074013

  28. 28.

    Peraza Hernandez EA, Bjoern K, Hartl DJ, Menzel A, Lagoudas DC (2015) Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates. Int J Solids Struct 69–70:442–458. https://doi.org/10.1016/j.ijsolstr.2015.05.007

  29. 29.

    Zhao J, Gao R, Yang Y, Huang Y, Hu P (2013) A bidirectional acceleration switch incorporating magnetic-fields-based tristable mechanism. IEEE ASME Trans Mechatron 18(1):113–120. https://doi.org/10.1109/TMECH.2011.2163725

  30. 30.

    Zhao J, Huang Y, Gao R, Chen G, Yang Y, Liu S, Fan K (2014) Novel universal multistable mechanism based on magnetic-mechanical-inertial coupling effects. IEEE Trans Ind Electron 61(6):2714–2723. https://doi.org/10.1109/TIE.2013.2273475

  31. 31.

    Zhao J, Zhang Y, Huang Y, Liu S, Chen G, Gao R, Yang Y (2014) Mechanical-magnetic coupling analysis of a novel large stroke penta-stable mechanism possessing multistability transforming capability. J Mech Robot 6(3):031004–1–031004–9. https://doi.org/10.1115/1.4026630

  32. 32.

    Zhao J, Gao R, Chen G, Liu S, Cao Q, Qiu T (2015) Nonlinear coupling mechanical model for large stroke magnetic-based multistable mechanisms. Mech Mach Theory 83:56–68. https://doi.org/10.1016/j.mechmachtheory.2014.09.004

  33. 33.

    Karami MA, Varoto PS, Inman DJ (2011) Experimental study of the nonlinear hybrid energy harvesting system. In: Modal analysis topics, Volume 3. Conference proceedings of the society for experimental mechanics series, pp 461–478. https://doi.org/10.1007/978-1-4419-9299-4_38

  34. 34.

    Avvari PV, Tang L, Yang Y, Soh CK (2013) Enhancement of piezoelectric energy harvesting with multi-stable nonlinear vibrations. In: Proceedings of SPIE, vol 8688, pp 86882H–1–86882H–12. https://doi.org/10.1117/12.2009560

  35. 35.

    Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2):023001–1–023001–12. https://doi.org/10.1088/0964-1726/22/2/023001

  36. 36.

    Pellegrini SP, Tolou N, Schenk M, Herder JL (2013) Bistable vibration energy harvesters: a review. J Intell Mater Syst Struct 24(11):1303–1312. https://doi.org/10.1177/1045389X12444940

  37. 37.

    Kim P, Seok J (2014) A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J Sound Vib 333(21):5525–5547. https://doi.org/10.1016/j.jsv.2014.05.054

  38. 38.

    Barth J, Kohl M (2010) A bistable magnetically enhanced shape memory microactuator with high blocking forces. Phys Procedia 10:189–196. https://doi.org/10.1016/j.phpro.2010.11.097

  39. 39.

    Barth J, Krevet B, Kohl M (2010) A bistable shape memory microswitch with high energy density. Smart Mater Struct 19(9):094004–1–094004–8. https://doi.org/10.1088/0964-1726/19/9/094004

  40. 40.

    Barth J, Megnin C, Kohl M (2012) A bistable shape memory alloy microvalve with magnetostatic latches. J Microelectromechanical Syst 21(1):76–84. https://doi.org/10.1109/JMEMS.2011.2174428

  41. 41.

    Sales TP (2017) Simultaneous use of shape memory alloys and permanent magnets in multistable smart structures for morphing aircraft applications. Ph.D. thesis, Federal University of Uberlândia, 2017

  42. 42.

    Machekposhti DF, Tolou N, Herder JL (2015) A review on compliant joints and rigid-body constant velocity universal joints toward the design of compliant homokinetic couplings. J Mech Des 137(3):032301–1–032301–12. https://doi.org/10.1115/1.4029318

  43. 43.

    Dirksen F, Anselmann M, Zohdi TI, Lammering R (2013) Incorporation of flexural hinge fatigue-life cycle criteria into the topological design of compliant small-scale devices. Precis Eng 37(3):531–541. https://doi.org/10.1016/j.precisioneng.2012.12.005

  44. 44.

    Xu P, Jingjun Y, Guanghua Z, Shusheng B (2008) The stiffness model of leaf-type isosceles-trapezoidal flexural pivots. J Mech Des 130(8):082303-1–082303-6. https://doi.org/10.1115/1.2936902

  45. 45.

    Xu P, Jingjun Y, Guanghua Z, Shusheng B, Zhiwei Y (2008) Analysis of rotational precision for an isosceles-trapezoidal flexural pivot. J Mech Des 130(5):052302–1–052302–9. https://doi.org/10.1115/1.2885507

  46. 46.

    Wriggers P (2008) Nonlinear finite element methods, Chapter 9, Section 2. Springer, Berlin

  47. 47.

    Shaw JA, Churchill CB (2009) A reduced-order thermomechanical model and analytical solution for uniaxial shape memory alloy wire actuators. Smart Mater Struct 18(6):065001–1–065001–21. https://doi.org/10.1088/0964-1726/18/6/065001

  48. 48.

    Akoun G, Yonnet JP (1984) 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Trans Magn 20(5):1962–1964. https://doi.org/10.1109/TMAG.1984.1063554

  49. 49.

    Sales TP, Rade DA, Inman DJ (2019) Morphing beam metastructure, equipped with permanent magnets, actuated by SMA wires (first actuation scenario). Figshare. https://doi.org/10.6084/m9.figshare.6812960

  50. 50.

    Sales TP, Rade DA, Inman DJ (2019) Morphing beam metastructure, equipped with permanent magnets, actuated by SMA wires (second actuation scenario). Figshare. https://doi.org/10.6084/m9.figshare.6812963

  51. 51.

    Sales TP, Rade DA, Inman DJ (2019) Morphing beam metastructure actuated by SMA wires. Figshare. https://doi.org/10.6084/m9.figshare.6812969

  52. 52.

    Barbarino S, Pecora R, Lecce L, Concilio A, Ameduri S, Calvi E (2009) A novel SMA-based concept for airfoil structural morphing. J Mater Eng Perform 18:696–705. https://doi.org/10.1007/s11665-009-9356-3

  53. 53.

    Barbarino S, Pecora R, Lecce L, Concilio A, Ameduri S, De Rosa L (2011) Airfoil structural morphing based on SMA actuator series: numerical and experimental studies. J Intell Mater Syst Struct 22(10):987–1004. https://doi.org/10.1177/1045389X11416032

  54. 54.

    Sales TP, Rade DA, Inman DJ (2019) Morphing airfoil metastructure, equipped with permanent magnets, actuated by SMA wires. Figshare. https://doi.org/10.6084/m9.figshare.6812954

  55. 55.

    Sales TP, Rade DA, Inman DJ (2019) Morphing airfoil metastructure actuated by SMA wires (first actuation scenario). Figshare. https://doi.org/10.6084/m9.figshare.6812966

  56. 56.

    Sales TP, Rade DA, Inman DJ (2019) Morphing airfoil metastructure actuated by SMA wires (second actuation scenario). Figshare. https://doi.org/10.6084/m9.figshare.6812957

Download references

Acknowledgements

The authors are grateful for funding received by the Brazilian National Council for Scientific and Technological Development - CNPq (Grant #402238/2013-3), the Brazilian National Institute of Science and Technology of Smart Structures in Engineering (INCT–EIE, CNPq Grant #574001/2008-5), the Brazilian Science without Borders program (CNPq Grant #202442/2014-4), the Air Force Office of Scientific Research (AFOSR, Grant #FA9550-12-1-0447) and the São Paulo Research Foundation (FAPESP, Grants #2015/20363-6 and #2018/15894-0). T.P. Sales is grateful to the Dept. of Aerospace Engineering of the University of Michigan and to the Adaptive Intelligent Multifunctional Structures Laboratory for support provided during his Sandwich Doctorate research period.

Author information

Correspondence to Thiago de P. Sales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sales, T.P., Rade, D.A. & Inman, D.J. A morphing metastructure concept combining shape memory alloy wires and permanent magnets for multistable behavior. J Braz. Soc. Mech. Sci. Eng. 42, 122 (2020). https://doi.org/10.1007/s40430-020-2202-0

Download citation

Keywords

  • Morphing wings
  • Adaptive structures
  • Metastructure
  • Shape memory alloys
  • Permanent magnets
  • Multistability