Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study

  • 51 Accesses


The paper proposes a dielectrophoresis microfluidic chip for particle separation, which uses dielectric properties to perform size-based fractionation of red blood cells and platelets. Based on the control variables, the distribution of the electric field in the chip and the trajectory of the particles in the microfluidic channel are calculated using COMSOL Multiphysics under different electrode shapes, voltages and chip exit structures. Both red blood cells and platelets respond to negative dielectrophoresis at an alternating current signal with a frequency of 100 kHz. The larger red blood cells are subjected to a stronger dielectrophoretic force than the platelets and are biased toward the right outlet, and the platelets flow out from the left outlet under the combined action of fluid force and dielectrophoretic force to achieve the purpose of separation. On this basis, through quantitative comparison and analysis, a more optimized microfluidic chip capable of effectively separating particles is finally selected.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Stroncek DF, Rebulla P (2007) Platelet transfusions. The Lancet 370(9585):427–438

  2. 2.

    Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

  3. 3.

    Han W, Chen X, Hu Z, Yang K (2018) Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel. J Micro/Nanolithography MEMS MOEMS 17(2):025502

  4. 4.

    Friedman SL, Roll FJ (1987) Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 161(1):207–218

  5. 5.

    Raddatz MSL et al (2008) Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem 120(28):5268–5271

  6. 6.

    Schriebl K et al (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18(9–10):899–909

  7. 7.

    Becker FF et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92(3):860–864

  8. 8.

    Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23(16):2569–2582

  9. 9.

    Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

  10. 10.

    Das D, Biswas K, Das S (2014) A microfluidic device for continuous manipulation of biological cells using dielectrophoresis. Med Eng Phys 36(6):726–731

  11. 11.

    Piacentini N et al (2011) Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3):034122

  12. 12.

    Zheng S, Liu J-Q, Tai Y-C (2008) Streamline-based microfluidic devices for erythrocytes and leukocytes separation. J Microelectromechanical Syst 17(4):1029–1038

  13. 13.

    Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784

  14. 14.

    Ali H, Park CW (2016) Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device. Korea Aust Rheol J 28(4):327–339

  15. 15.

    Mathew B et al (2015) Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation. Chem Eng Sci 138:266–280

  16. 16.

    Mathew B et al (2016) Path of microparticles in a microfluidic device employing dielectrophoresis for hyperlayer field-flow fractionation. Microsyst Technol 22(7):1721–1732

  17. 17.

    Mathew B et al (2016) Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation. J Sep Sci 39(15):3028–3036

  18. 18.

    Tajik P et al (2019) Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.9b00771

  19. 19.

    Cetin B, Öner SD, Baranoğlu B (2017) Modeling of dielectrophoretic particle motion: point particle versus finite-sized particle. Electrophoresis 38(11):1407–1418

  20. 20.

    Patki S et al (2012) Wireless EEG system with real time impedance monitoring and active electrodes. In: 2012 IEEE biomedical circuits and systems conference (BioCAS). IEEE

  21. 21.

    Phol HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric field. Cambridge University Press, Cambridge

  22. 22.

    Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499

  23. 23.

    Buyukkockak S, Ozer MB, Cetin B (2017) Numerical modeling of ultrasonic particle manipulation for microfluidic applications. Microfluid Nanofluid 17:1025–1037

  24. 24.

    Srivastava SK et al (2008) Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29(24):5033–5046

  25. 25.

    Kang Y et al (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249

  26. 26.

    Chen KP et al (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448

Download references


This work was supported by LiaoNing Revitalization Talents Program (XLYC1907122), Liaoning Natural Science Foundation (2019-MS-169). We sincerely thank Prof. Chong Liu for his kind guidance.

Author information

All authors designed and performed the numerical simulations. The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Correspondence to Xueye Chen.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Erick de Moraes Franklin, Ph.D.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, X. Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study. J Braz. Soc. Mech. Sci. Eng. 42, 89 (2020). https://doi.org/10.1007/s40430-020-2169-x

Download citation


  • Comsol
  • Dielectrophoresis
  • Microfluidic chip
  • Particle separation