Advertisement

Closed-form solution for direct and inverse kinematic models of a parallel manipulator for robotic orbital welding

  • Eduardo José LimaIIEmail author
  • Henrique Augusto de Matos Souza
  • Kassio Maciel Kienitz
  • Frederico Allevato Ramalho Filho
Technical Paper
  • 33 Downloads

Abstract

This paper presents a closed-form solution for direct and inverse kinematic models of a four-degree-of-freedom parallel manipulator designed for weld torch positioning of orbital welding of metallic pipes. The mathematical model was developed, implemented and simulated considering the geometric parameters of the prototype. The proposed closed-form solution showed that the mathematical model matched the behavior of the manipulator, confirming that the motion was entirely defined through the mathematical and geometric relations, without the requirement of iterations or numerical solutions. The closed-form solution also offered a simpler approach for the mechanical behavior of the manipulator, making it feasible to implement a less complex-coded routine in the embedded microcontroller due to its lower computational requirements.

Keywords

Robot design Welding Parallel manipulators Kinematic modeling 

Notes

References

  1. 1.
    Merlet JP (2006) Parallel robots. Springer, NetherlandszbMATHGoogle Scholar
  2. 2.
    Hernández A, Altuzarra O, Salgado O, Pinto C, Petuya V (2012) Designing parallel manipulators: from specifications to a real prototype. Ind Robot Int J 39(5):500–512CrossRefGoogle Scholar
  3. 3.
    Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New YorkGoogle Scholar
  4. 4.
    Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms, springer tracts in advanced robotics, vol 33. Springer, HeidelbergGoogle Scholar
  5. 5.
    Gogu G (2008) Structural synthesis of parallel robots, part 1: methodology. Springer, NetherlandsCrossRefGoogle Scholar
  6. 6.
    Hunt JA (2007) Robot kinematics and the Gantry-Tau parallel machine. Ind Robot Int J 34(5):362–367CrossRefGoogle Scholar
  7. 7.
    Sabater JM, Saltarén RJ, Aracil R, Yime E, Azorín JM (2006) Tele-operated parallel climbing robots in nuclear installations. Ind Robot Int J 33(5):381–386CrossRefGoogle Scholar
  8. 8.
    Menegaldo LL, Santana RES, Fleury AT (2006) Kinematical modeling and optimal design of a biped robot joint parallel linkage. J Braz Soc Mech Sci Eng 28(4):505–511CrossRefGoogle Scholar
  9. 9.
    Lima EJ II, Torres GCF, Felizardo I, Ramalho Filho FA, Bracarense AQ (2005) Development of a robot for orbital welding. Ind Robot Int J 32(4):321–325CrossRefGoogle Scholar
  10. 10.
    Felizardo I, Bracarense AQ, Lima II EJ, Torres GCF, Reis ATC, Papatela, PHC (2005) Soldagem Orbital de Dutos Utilizando Robô Dedicado de 4 Graus de Liberdade. Anais do 7º Congresso Ibero-Americano de Engenharía Mecânica, 2005. Cidade do México, MéxicoGoogle Scholar
  11. 11.
    Ramalho Filho FA, Bracarense AQ, Lima II EJ, Cordeiro JF, Silva EB (2010) Development of parallel manipulators for welding robots. In: Proceedings of the 41st international symposium on robotics. Frankfurt, Germany, pp 1212–1217Google Scholar
  12. 12.
    Cervantes-Sánchez JJ, Rico-Martínez JM, Pérez-Muñoz VH, Orozco-Muñiz JD (2017) A closed-form solution to the forward displacement analysis of a Schönflies parallel manipulator. J Braz Soc Mech Sci Eng 39(2):553–563CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2020

Authors and Affiliations

  • Eduardo José LimaII
    • 1
    Email author
  • Henrique Augusto de Matos Souza
    • 1
  • Kassio Maciel Kienitz
    • 1
  • Frederico Allevato Ramalho Filho
    • 2
  1. 1.Departamento de Engenharia Mecânica, Programa de Pós-Graduação em Engenharia MecânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.FAR-X TecnologiaNova LimaBrazil

Personalised recommendations