Advertisement

Numerical modeling of flow stress and grain evolution of an Mg AZ31B alloy based on hot compression tests

  • R. A. R. Giorjao
  • E. F. Monlevade
  • J. A. AvilaEmail author
  • A. P. Tschiptschin
Technical Paper
  • 20 Downloads

Abstract

Magnesium alloys offer a wide range of applications in modern lightweight structures, although the correct forming parameters need to be found to reach a good combination of fine microstructure and the required mechanical properties. Several discrete and statistical methods have been proposed to simulate the dynamic recrystallization process and adopted to study microstructural evolution. However, the materials parameters necessary to develop these models are not widely available. Hence, industrial evaluation of these parameters is complex, unpractical for several types of material and time consuming for daily industrial applications. In that way, the thermomechanical behavior and grain size evolution modeling of the AZ31 alloy are proposed using isothermal compression data. Parameters to calculate coupled stress–strain–temperature parameters, dynamic recrystallization, volume fraction and grain size were obtained from the stress–strain curves. Then, the data were input in Deform-3D software to simulate the hot deformation process and verify with experimental data the consistency of the values obtained. Measured grains size agreed with the conducted modeling, showing the reliability of strain–stress and grain size data on predicting dynamic recrystallization phenomena.

Keywords

AZ31B Isothermal compression Dynamic recrystallization Finite element modeling Gleeble simulation 

Notes

Acknowledgements

The authors thank LNNano and Villares Metals for technical support.

References

  1. 1.
    Kumar DS, Sasanka CT, Ravindra K, Suman KNS (2015) Magnesium and its alloys in automotive applications—a review. Am J Mater Sci Technol.  https://doi.org/10.7726/ajmst.2015.1002 CrossRefGoogle Scholar
  2. 2.
    Humphreys FJ, Hatherly M (2004) Hot deformation and dynamic restoration. In: Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Amstredam, pp 415–450.  https://doi.org/10.1016/B978-008044164-1/50017-7 CrossRefGoogle Scholar
  3. 3.
    He Y, Ding H, Liu L, Shin K (2006) Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle. Mater Sci Eng A 429:236–246.  https://doi.org/10.1016/j.msea.2006.05.070 CrossRefGoogle Scholar
  4. 4.
    Liu X, Li L, He F, Zhou J, Zhu B, Zhang L (2013) Simulation on dynamic recrystallization behavior of AZ31 magnesium alloy using cellular automaton method coupling Laasraoui–Jonas model. Trans Nonferrous Met Soc China 23:2692–2699.  https://doi.org/10.1016/S1003-6326(13)62786-7 CrossRefGoogle Scholar
  5. 5.
    Choi SH, Kim DW, Seong BS, Rollett AD (2011) 3-D simulation of spatial stress distribution in an AZ31 Mg alloy sheet under in-plane compression. Int J Plast 27:1702–1720.  https://doi.org/10.1016/j.ijplas.2011.05.014 CrossRefzbMATHGoogle Scholar
  6. 6.
    Ryan ND, McQueen HJ (1990) Dynamic softening mechanisms in 304 austenitic stainless steel. Can Metall Q 29:147–162.  https://doi.org/10.1179/cmq.1990.29.2.147 CrossRefGoogle Scholar
  7. 7.
    Poliak EI, Jonas JJ (1996) A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater 44:127–136.  https://doi.org/10.1016/1359-6454(95)00146-7 CrossRefGoogle Scholar
  8. 8.
    Xu Y, Hu LX, Sun Y (2014) Dynamic recrystallization kinetics of as-cast AZ91D alloy. Trans Nonferrous Met Soc China 24:1683–1689.  https://doi.org/10.1016/S1003-6326(14)63241-6 (english ed.) CrossRefGoogle Scholar
  9. 9.
    Quan GZ, Mao YP, Li GS, Lv WQ, Wang Y, Zhou J (2012) A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves. Comput Mater Sci 55:65–72.  https://doi.org/10.1016/j.commatsci.2011.11.031 CrossRefGoogle Scholar
  10. 10.
    Liu J, Cui Z, Ruan L (2011) A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater Sci Eng A 529:300–310.  https://doi.org/10.1016/j.msea.2011.09.032 CrossRefGoogle Scholar
  11. 11.
    Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14:1136–1138.  https://doi.org/10.1016/0001-6160(66)90207-0 CrossRefGoogle Scholar
  12. 12.
    Spigarelli S, El Mehtedi M, Cabibbo M, Evangelista E, Kaneko J, Jäger A, Gartnerova V (2007) Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Mater Sci Eng A 462:197–201.  https://doi.org/10.1016/j.msea.2006.03.155 CrossRefGoogle Scholar
  13. 13.
    Liu J, Cui Z, Li C (2008) Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput Mater Sci 41:375–382.  https://doi.org/10.1016/j.commatsci.2007.04.024 CrossRefGoogle Scholar
  14. 14.
    Zimina M, Málek P, Bohlen J, Letzig D, Kurz G, Cieslar M (2015) Mechanical properties of homogenized twin-roll cast and conventionally cast AZ31 magnesium alloys. Mater Eng 22:8–15Google Scholar
  15. 15.
    Padilha F, Siciliano AF Jr (2005) Encruamento, recristalização, crescimento de grão e textura. ABM, São PauloGoogle Scholar
  16. 16.
    Xu Y, Hu L, Sun Y (2013) Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J Alloys Compd 580:262–269.  https://doi.org/10.1016/j.jallcom.2013.05.082 CrossRefGoogle Scholar
  17. 17.
    Aliakbari Sani S, Ebrahimi GR, Kiani Rashid AR (2016) Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61 + Sr magnesium alloys. J Magnes Alloy 4:104–114.  https://doi.org/10.1016/j.jma.2016.05.001 CrossRefGoogle Scholar
  18. 18.
    Liao C, Wu H, Wu C, Zhu F, Lee S (2014) Hot deformation behavior and flow stress modeling of annealed AZ61 Mg alloys. Prog Nat Sci Mater Int 24:253–265.  https://doi.org/10.1016/j.pnsc.2014.04.006 CrossRefGoogle Scholar
  19. 19.
    Nourollahi GA, Farahani M, Babakhani A, Mirjavadi SS (2013) Compressive deformation behavior modeling of AZ31 magnesium alloy at elevated temperature considering the strain effect. Mater Res 16:1309–1314.  https://doi.org/10.1590/S1516-14392013005000149 CrossRefGoogle Scholar
  20. 20.
    Bhattacharya R, Lan YJ, Wynne BP, Davis B, Rainforth WM (2014) Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions. J Mater Process Technol 214:1408–1417.  https://doi.org/10.1016/j.jmatprotec.2014.02.003 CrossRefGoogle Scholar
  21. 21.
    Ion SE, Humphreys FJ, White SH (1982) Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall 30:1909–1919.  https://doi.org/10.1016/0001-6160(82)90031-1 CrossRefGoogle Scholar
  22. 22.
    Shaban M, Eghbali B (2010) Determination of critical conditions for dynamic recrystallization of a microalloyed steel. Mater Sci Eng A 527:4320–4325.  https://doi.org/10.1016/j.msea.2010.03.086 CrossRefGoogle Scholar
  23. 23.
    Quan GZ, Shi Y, Wang YX, Kang BS, Ku TW, Song WJ (2011) Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress–strain data. Mater Sci Eng A 528:8051–8059.  https://doi.org/10.1016/j.msea.2011.07.064 CrossRefGoogle Scholar
  24. 24.
    Sellars CM, Whiteman JA (1978) Recrystallization and grain growth in hot rolling. Met Sci 13:187–194.  https://doi.org/10.1179/msc.1979.13.3-4.187 CrossRefGoogle Scholar
  25. 25.
    Mcqueen HJ, Jonas JJ (1984) Recent advances in hot working: fundamental dynamic softening mechanisms. J Appl Metalwork 3:233–241.  https://doi.org/10.1007/BF02833651 CrossRefGoogle Scholar
  26. 26.
    Lv B-J, Peng J, Shi D-W, Tang A-T, Pan F-S (2013) Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress–strain curves. Mater Sci Eng A 560:727–733.  https://doi.org/10.1016/j.msea.2012.10.025 CrossRefGoogle Scholar
  27. 27.
    He Y, Pan Q, Chen Q, Zhang Z, Liu X, Li W (2012) Modeling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation. Trans Nonferrous Met Soc China 22:246–254.  https://doi.org/10.1016/S1003-6326(11)61167-9 CrossRefGoogle Scholar
  28. 28.
    Bergström Y (1970) A dislocation model for the stress–strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater Sci Eng 5:193–200.  https://doi.org/10.1016/0025-5416(70)90081-9 CrossRefGoogle Scholar
  29. 29.
    Guo-Zheng Q, Yang W, Ying-Ying L, Jie Z (2013) Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for as-extruded 42CrMo steel. Mater Res 16:1092–1105.  https://doi.org/10.1590/S1516-14392013005000091 CrossRefGoogle Scholar
  30. 30.
    Fatemi-Varzaneh SM, Zarei-Hanzaki A, Beladi H (2007) Dynamic recrystallization in AZ31 magnesium alloy. Mater Sci Eng A 456:52–57.  https://doi.org/10.1016/j.msea.2006.11.095 CrossRefGoogle Scholar
  31. 31.
    ASTM Standard (2012) E112–12: standard test methods for determining average grain size. ASTM Int E112–12:1–27.  https://doi.org/10.1520/E0112-12.1.4 CrossRefGoogle Scholar
  32. 32.
    Lee BH, Reddy NS, Yeom JT, Lee CS (2007) Flow softening behavior during high temperature deformation of AZ31 Mg alloy. J Mater Process Technol 187–188:766–769.  https://doi.org/10.1016/j.jmatprotec.2006.11.053 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Welding EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Metallurgical and Materials Engineering DepartmentUniversity of São PauloSão PauloBrazil
  3. 3.UNESP – São Paulo State UniversitySão João da Boa VistaBrazil

Personalised recommendations