Advertisement

Influence of the fastening between thread–test samples in the stress–strain curves in tensile dynamic tests

Abstract

A Hopkinson tensile bar has been numerically simulated by means of the commercial software ABAQUS, with different gaps between the sample and the incident and the transmitted bars. This simulated a poor adjustment in the preparation of the tests and observed the effect the measurements of the stress of the incident, reflected and transmitted bars might have in the results of the stress–time and strain–time curves, as well as in the stress–strain curve of an aluminum sample. It is verified that the gap may significantly affect the elastic limit to be obtained from the dynamic tests and the expected results of the ultimate stress and deformation, and also affect the sample stress–strain curve to a large extent. We also concluded in the importance that is necessary in the testing equipment for a dynamic characterization of materials, in this case, the equipment for dynamic tensile testing.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Gonzalez-Lezcano RA, Del Río JM (2019) Numerical analysis of the influence of the damping rings’ thickness on interrupted dynamic tension results using SiC-reinforced ZC71 magnesium alloy specimens. Mech. Sci. 10:169–186. https://doi.org/10.5194/ms-10-169-2019

  2. 2.

    Harding J, Welsh L (1983) A tensile testing technique for fiber-reinforced composites at impact rates of strain. J Mater Sci 18(6):1810–1826

  3. 3.

    Lindholm U, Yeakley L (1968) High strain-rate testing—tension and compression. Exp Mech 8(1):1–9

  4. 4.

    Albertini C, Montagnani M (1976) Wave-propagation effects in dynamic loading. Nucl Eng Des 37(1):115–124

  5. 5.

    Nicholas T (1981) Tensile testing of materials at high-rates of strain. Exp Mech 21(5):177–185

  6. 6.

    Staab G, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31:232–235

  7. 7.

    Thakur A, Nemat-Nasser S, Vecchio K (1996) Dynamic Bauschinger effect. Acta Materialia 44(7):2797–2807

  8. 8.

    Verleysen P, Degrieck J (2004) Experimental investigation of the deformation of Hopkinson bar specimens. Int J Impact Eng 30(3):239–253

  9. 9.

    Gray GT (2000) Classic split-Hopkinson pressure bar testing. ASM International, Materials Park, pp 462–476

  10. 10.

    Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250

  11. 11.

    Gerlach R, Kettenbeil C, Petrinic N (2012) A new split Hopkinson tensile bar design. Int J Impact Eng 50:63–67

  12. 12.

    Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676

  13. 13.

    Van Slycken J (2008) Advanced use of a split Hopkinson bar setup application to TRIP steels. Thesis, Ghent University, Belgium

  14. 14.

    Hamouda A, Hashmi M (1998) Testing of composite materials at high rates of strain: advances and challenges. J Mater Process Technol 77(1–3):327–336

  15. 15.

    Verleysen P, Benedict V, Verstraete T et al (2009) Numerical study of the influence of the specimen geometry on Split Hopkinson bar tensile test results. Latin Am J Solids Struct 6(3):285–298

  16. 16.

    Kaiser MA (2014) “Advancements in the split Hopkinson bar test” Master’s thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1998. Steel with tensile split Hopkinson Bar method. Exp Mech 54(4):641–652

  17. 17.

    Nemat-Nasser S, Isaacs J, Starrett J (1991) Hopkinson techniques for dynamic recovery experiments. Proc R Soc Math Phys Eng Sci 435:371–391

  18. 18.

    Dongfang M, Danian C, Shanxing W et al (2010) An interrupted tensile testing at high strain rates for pure copper bars. J Appl Phys 108(11):114902

  19. 19.

    Wu X, Gorham D (1997) Stress equilibrium in the split Hopkinson pressure bar test. J Phys IV (Proceedings) 7(C3):91–96

  20. 20.

    Jiang F, Vecchio KS (2009) Hopkinson Bar loaded fracture experimental technique: a critical review of dynamic fracture toughness test. Appl Mech Rev 62(6):060802

  21. 21.

    Godunov SK, Romenskii EI (2003) Elements of continuum mechanics and conservation laws. Springer, Novosibirsk

  22. 22.

    Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23

  23. 23.

    Oosterkamp LD, Ivankovic A, Venizelos G (1999) High strain rate properties of selected aluminium alloys. Mech Sci Eng A 278:225–235

  24. 24.

    Reyes AA, Hopperstad OS, Lademo O-G, Langseth M (2006) Modeling of textured aluminium alloys used in a bumper system: material tests and characterization. Comput Mater Sci 37:246–268

  25. 25.

    El-Magd E, Abouridouane M (2006) Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int J Impact Eng 32:741–758

  26. 26.

    ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013. www.astm.org

  27. 27.

    Richter F, Köppe E, Daum W (2016) Tracking deformation history in split Hopkinson pressure bar testing. Mater Today Proc 3(4):1139–1143

  28. 28.

    Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminium alloy sheet. Int J Impact Eng 32:541–560

  29. 29.

    Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775

  30. 30.

    Yang X, Xiong X, Yin Z, Wang H, Wang J, Chen D (2014) Interrupted test of advanced high strength steel with tensile split Hopkinson bar method. Exp Mech 54(4):641–652

  31. 31.

    Swantek S, Wicks A, Wilson L (2001) An optical method of strain measurement in the split Hopkinson pressure bar. In: Proceedings of Imac-Xix: a conference on structural dynamics, vol 1 and 2, 14359, pp 1471–1477

  32. 32.

    Achenbach JD (1973) Wave propagation in elastic solids. North-Holland series in applied mathematics and mechanics. North Holland, Amsterdam

  33. 33.

    Resnyansky A (2000) Study of influence of loading method on results of the split Hopkinson bar test. In: Structural failure and plasticity (IMPLAST), pp 597–602

  34. 34.

    González-Lezcano R, Essa Y, Pérez J (2003) Numerical analysis of interruption process of dynamic tensile tests using a Hopkinson bar. J Phys IV 110:565–570

  35. 35.

    Verleysen P, Benedict V, Verstraete T, Joris D (2009) Numerical study of the influence of the specimen geometry on split Hopkinson bar tensile test results. Lat Am J Solids Struct 6(3):285–298

  36. 36.

    Pérez-Martín MJ, Erice B, Gálvez F (2014) On the loading-rate dependence of the Al 7017-T73 fracture-initiation toughness. Proc Mater Sci 3:1026–1031

  37. 37.

    Kawata K, Hashimoto S, Kurokawa K, Kanayama N (1979) A new testing method for the characterisation of materials in high-velocity tension, mechanical properties at high rates of strain. In: Harding J (ed) Institute of Physics conference series No. 47. Taylor & Francis Group, Oxford, UK, pp 71–80

  38. 38.

    González-Lezcano R, Del Río JM (2015) Numerical analysis of the influence of the damping rings’ dimensions on interrupted dynamic tension experiment results. J Strain Anal Eng Des 10:1–20

  39. 39.

    González-Lezcano R, Del Río JM (2015) Influence of the projectile’s length on interrupted dynamic tension experiment results. Global J Res Eng Civ Struct Eng 15(4):17–24

  40. 40.

    González-Lezcano R, del Río JM (2017) Influence of damping ring material on dynamic tensile tests. Int J Eng Technol 9(2):1107–1120

  41. 41.

    Whitehouse AF, Clyne TW (1993) Effects of reinforcement content and shape on cavitation and failure in metal-matrix composites. Composites 24(3):256–261

  42. 42.

    González Lezcano RA, López Fernandez EJ, Cesteros García S, Sanglier Contreras G (2019) Influencia de la geometría del proyectil en ensayos dinámicos de tracción. Matéria (Rio de Janeiro). https://doi.org/10.1590/s1517-707620190003.0791

Download references

Acknowledgements

The author expresses his gratitude to CEU San Pablo University (Madrid, Spain) for the provided means and infrastructure. The author also wishes to express his gratitude to the Engineering Department of the University Carlos III from Madrid and the Project CEU-Banco Santander (Ref: MVP19V14) provided by CEU San Pablo University and financed by Banco Santander

Author information

Correspondence to Roberto-Alonso González-Lezcano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: João Marciano Laredo dos Reis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Lezcano, R., López-Fernández, E., Cesteros-García, S. et al. Influence of the fastening between thread–test samples in the stress–strain curves in tensile dynamic tests. J Braz. Soc. Mech. Sci. Eng. 42, 39 (2020) doi:10.1007/s40430-019-2131-y

Download citation

Keywords

  • Dynamic tests
  • Mechanical characterization
  • Numerical simulations
  • Finite elements
  • Experimental mechanics