Advertisement

Curvature synthesis for face-milling spiral bevel gears with high-order transmission errors

  • Jianjun YangEmail author
  • Bingyang Wei
  • Hua Zhang
  • Zhenghong Shi
  • Jubo Li
  • Teik C. Lim
Technical Paper
  • 48 Downloads

Abstract

A modification methodology based on curvature synthesis for face-milling spiral bevel gears is proposed in this paper. This scheme includes the calculation of machine-tool settings and determination of the instantaneous modified roll ratio based on different predesigned high-order transmission error (TE) curves. Firstly, the principal curvatures and directions of ease-off pinion surface at mean contact point are carried out based on the fully conjugate pinion surface. The machine-tool settings of the pinion can be determined to meet with the meshing conditions between the cradle and the pinion. Then, compared with the parabolic TE, the amplitudes of loaded TE under a series of pinion torque for fourth-order and sixth-order TE are decreased based on the results of loaded tooth contact analysis. Finally, an example is provided to verify the proposed method. The parabolic, fourth-order and sixth-order transmission error curves are used to illustrate how to obtain the modified roll curve.

Keywords

Curvature synthesis Relative principal curvature High-order transmission error Modified roll ratio Spiral bevel gears 

Notes

Acknowledgements

The authors would like to express their appreciation to the financial assistance from the National Natural Science Foundation of China (No. 51875174) and Key Scientific and Technological Project of Henan Province (Nos. 192102210057, 182102210287, 182102210042, and 172102210037).

References

  1. 1.
    Artoni Alessio, Gabiccini Marco (2008) Nonlinear identification of machine settings for flank form modifications in hypoid gears. J Mech Des 130(11):112602.  https://doi.org/10.1115/1.2976454 CrossRefGoogle Scholar
  2. 2.
    Simon Vilmos (2008) Influence of tooth errors and misalignments on tooth contact in spiral bevel gears. Mech Mach Theory 43(10):1253–1268.  https://doi.org/10.1016/j.mechmachtheory.2007.10.012 CrossRefzbMATHGoogle Scholar
  3. 3.
    Vogel O, Griewak A, Bär G (2002) Direct gear tooth contact analysis for hypoid bevel gears. Comput Methods Appl Mech Eng 191(36):3965–3982.  https://doi.org/10.1016/S0045-7825(02)00351-1 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bracci A, Gabiccini M, Artoni A, Guiggiani M (2009) Geometric contact pattern estimation for gear drives. Comput Methods Appl Mech Eng 198(2):1563–1571.  https://doi.org/10.1016/j.cma.2009.01.009 CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhou K, Tang J (2011) Envelope-approximation theory of manufacture technology for point-contact tooth surface on six-axis CNC hypoid generator. Mech Mach Theory 46(6):806–819.  https://doi.org/10.1016/j.mechmachtheory.2011.01.010 CrossRefzbMATHGoogle Scholar
  6. 6.
    Litvin FL, Zhang Y (1991) Local synthesis and tooth contact analysis of face-milled spiral bevel gears, NASA, CR-4342Google Scholar
  7. 7.
    Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Li Jubo, Zhang Pingze, Feng Lixin et al (2019) Information description and integration of spiral bevel gear manufacturing process under networked manufacturing mode. J Braz Soc Mech Sci Eng 41:234.  https://doi.org/10.1007/s40430-019-1737-4 CrossRefGoogle Scholar
  9. 9.
    Li Tianxing, Li Jubo, Deng Xiaozhong (2017) A new digitized reverse correction method for hypoid gears based on a one-dimensional probe. Meas Sci Technol 28(12):1–15.  https://doi.org/10.1088/1361-6501/aa8dd7 CrossRefGoogle Scholar
  10. 10.
    Litvin FL, Fuentes A, Hayasaka K (2006) Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech Mach Theory 41(1):83–118.  https://doi.org/10.1016/j.mechmachtheory.2005.03.001 CrossRefzbMATHGoogle Scholar
  11. 11.
    Litvin FL, Fuentes A, Fan Q, Handschuh RF (2002) Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears. Mech Mach Theory 37(5):441–459.  https://doi.org/10.1016/S0094-114X(01)00086-6 CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu Siyuan, Song Chaosheng, Zhu Caichao, Liang Chengcheng, Yang Xingyu (2019) Investigation on the influence of work holding equipment errors on contact characteristics of face-hobbed hypoid gear. Mech Mach Theory 138(8):95–111.  https://doi.org/10.1016/j.mechmachtheory.2019.03.042 CrossRefGoogle Scholar
  13. 13.
    Wang Peng, Zhang Yidu, Wan Min (2016) Global synthesis for face milled spiral bevel gears with zero transmission error. J Mech Des 138(3):033302.  https://doi.org/10.1115/1.4032471 CrossRefGoogle Scholar
  14. 14.
    Kolivand M, Kahraman A (2009) A load distribution model for face-milled and face-hobbed hypoid gears using ease-off topography and shell theory. Mech Mach Theory 44(10):1848–1865.  https://doi.org/10.1016/j.mechmachtheory.2009.03.009 CrossRefzbMATHGoogle Scholar
  15. 15.
    Kolivand M, Kahraman A (2010) An ease-off based method for loaded tooth contact analysis of hypoid gears having local and global surface deviations. J Mech Des 132:071004.  https://doi.org/10.1115/1.4001722 CrossRefGoogle Scholar
  16. 16.
    Artoni A, Koliv M, Kahraman A (2010) An ease-off based optimization of the loaded transmission error of hypoid gears. J Mech Des 132:011010.  https://doi.org/10.1115/1.4000645 CrossRefGoogle Scholar
  17. 17.
    Shih YP, Fong ZH (2007) Flank modification methodology for face-hobbing hypoid gears based on ease-off topography. J Mech Des 129(12):1294–1302.  https://doi.org/10.1115/1.2779889 CrossRefGoogle Scholar
  18. 18.
    Shih YP (2010) A novel ease-off flank modification methodology for spiral bevel gears and hypoid gears. Mech Mach Theory 45(8):1108–1124.  https://doi.org/10.1016/j.mechmachtheory.2010.03.010 CrossRefzbMATHGoogle Scholar
  19. 19.
    Stadtfeld HJ, Gaiser U (2000) The ultimate motion graph. J Mech Des 122(3):317–322.  https://doi.org/10.1115/1.1286124 CrossRefGoogle Scholar
  20. 20.
    Wang PY, Fong ZH (2006) Fourth-order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (MRM) correction. J Mech Des 128(2):457–467.  https://doi.org/10.1115/1.2168466 CrossRefGoogle Scholar
  21. 21.
    Wang PY, Fong ZH (2005) Adjustability improvement of face-milling spiral bevel gears by modified radial motion (MRM) method. Mech Mach Theory 40(1):69–89.  https://doi.org/10.1016/j.mechmachtheory.2004.05.011 CrossRefzbMATHGoogle Scholar
  22. 22.
    Fan Q (2008) High-order tooth flank form error correction for face-milled spiral bevel and hypoid gears. J Mech Des 130(7):072601.  https://doi.org/10.1115/1.2898878 CrossRefGoogle Scholar
  23. 23.
    Fan Q (2010) Tooth surface error correction for face-hobbed hypoid gears. J Mech Des 132(1):011004.  https://doi.org/10.1115/1.4000646 CrossRefGoogle Scholar
  24. 24.
    Yang JJ, Shi ZH, Zhang H et al (2018) Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors. J Sound Vib 417:149–164.  https://doi.org/10.1016/j.jsv.2017.12.022 CrossRefGoogle Scholar
  25. 25.
    Su JZ, Fang ZD, Cai XW (2013) Design and analysis of spiral bevel gears with seventh-order function of transmission error. Chin J Aeronaut 26(5):1310–1316.  https://doi.org/10.1016/j.cja.2013.07.012 CrossRefGoogle Scholar
  26. 26.
    Gosselin C, Cloutier L, Nguyen QD (1995) A general formulation for the calculation of the load sharing and transmission error under load of spiral bevel and hypoid gears. Mech Mach Theory 30(3):433–450CrossRefGoogle Scholar
  27. 27.
    Simon VV (2009) Design and manufacture of spiral bevel gears with reduced transmission errors. J Mech Des 131(4):041007.  https://doi.org/10.1115/1.3087540 CrossRefGoogle Scholar
  28. 28.
    Wei BY, Fang ZD, Zhou YW, Deng XZ (2003) On improving design of spiral bevel gear with high-order transmission error curve. Northwest Polytech Univers 21(6):757–760 (in Chinese) Google Scholar
  29. 29.
    Ding Han, Tang Jinyuan, Zheng Jue (2016) A hybrid modification approach of machine-tool setting considering high tooth contact performance in spiral bevel and hypoid gears. J Manuf Syst 41:228–238.  https://doi.org/10.1016/j.jmsy.2016.09.003 CrossRefGoogle Scholar
  30. 30.
    Cao XM, Zhang H, Fang ZD (2009) Design and analysis of loaded transmission errors for aviation spiral bevel gears. J Aerosp Power 24(11):2618–2625 (in Chinese) Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Jianjun Yang
    • 1
    Email author
  • Bingyang Wei
    • 1
  • Hua Zhang
    • 1
  • Zhenghong Shi
    • 2
  • Jubo Li
    • 1
  • Teik C. Lim
    • 2
  1. 1.School of Mechanical and Electronic EngineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Vibro-Acoustics and Sound Quality Research Laboratory, Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations