The misleading total replacement of internal combustion engines by electric motors and a study of the Brazilian ethanol importance for the sustainable future of mobility: a review

  • Augusto César Teixeira MalaquiasEmail author
  • Nilton Antonio Diniz Netto
  • Fernando Antonio Rodrigues Filho
  • Roberto Berlini Rodrigues da Costa
  • Marcos Langeani
  • José Guilherme Coelho Baêta


The sustainable future of mobility should not be viewed as the burial of the internal combustion engine (ICE), nowadays the main source of vehicular propulsion. Even with the increasing electrification of the transport means, the low global percentage of the electric fleet, around 0.2% of the total road vehicles, associated with an annual growth rate of less than 60%, indicates that they will not significantly change the market share in the short- and medium-term periods. This means that fuel demanded by ICEs and pollutant emissions generated by them will be very relevant in the years to come. Thus, the search for significant advances in technology associated with the use of renewable fuels is very important for environmental and economic sustainability. In this regard, the present work intends to demonstrate that the association between Brazilian ethanol and advanced technology in ICEs is a promising alternative for a more sustainable global mobility in the future. For this purpose, some ethanol properties are presented to justify its relevance as an ideal biofuel for highly boosted and efficient engines. Then, environmental, social, ethical and economic impacts arising from electric vehicles are investigated, demystifying the zero-emission vehicle terminology attributed to them and, finally, new technologies for ICEs are presented, proving that they are constantly evolving and improving, which is fundamental to the future of the world automotive fleet.


Brazilian ethanol Internal combustion engines Future of mobility Zero-emission vehicles Renewable energy sources 



Associação Nacional dos Fabricantes de Veículos Automotores


Agência Nacional de Energia Elétrica


Agência Nacional do Petróleo


Monoxide carbon


Carbon dioxide


Coefficient of variation


Compression ratio


Direct injection




Engine control unit


Exhaust gas recirculation


Electric vehicle


Fuel conversion efficiency


Greenhouse gases


Hydro carbon component


Homogeneous charge compression ignition


Hybrid vehicle


Internal combustion engine


Instituto Nacional de Metrologia


Maximum brake torque


Nitrous oxide


Port fuel injection


Partially premixed combustion


Reactivity-controlled compression ignition


Research and development


Research octane number


Spark ignition


Variable valve timing


Water injection


Zero-emission vehicle



The authors acknowledge the Mobility Technology Center (CTM-UFMG) for investing in R&D of internal combustion engines fueled with ethanol, a renewable Brazilian energy matrix. Also, they give an eternal and special acknowledgment to Dr. Michael Pontoppidan, who largely contributed to this and other works and, unfortunately, passed away at the end of 2018.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Silva T, Baeta J, Neto N, Malaquias A et al (2017) Effects of internal EGR on the downsized ethanol SIDI engine performance and emission. SAE technical paper 2017-36-0264, 2017.
  2. 2.
    Santos TB, Ferreira VP, Torres EA et al (2017) Energy analysis and exhaust emissions of a stationary engine fueled with diesel–biodiesel blends at variable loads. J Braz Soc Mech Sci Eng 39:3237. CrossRefGoogle Scholar
  3. 3.
    Szulejko JE, Kumar P, Deep A, Kim K-H (2017) Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmos Pollut Res 8(1):136–140. CrossRefGoogle Scholar
  4. 4.
    Gervais F (2016) Anthropogenic CO2 warming challenged by 60-year cycle. Earth Sci Rev 155:129–135. CrossRefGoogle Scholar
  5. 5.
    Yang N, Wang R (2015) Sustainable technologies for the reclamation of greenhouse gas CO2. J Clean Prod 103:784–792. CrossRefGoogle Scholar
  6. 6.
    Karthickeyan V, Balamurugan P, Senthil R (2017) Comparative studies on emission reduction in thermal barrier coated engine using single blend ratio of various non-edible oils. J Braz Soc Mech Sci Eng 39:1823. CrossRefGoogle Scholar
  7. 7.
    Chu B, Duncan S, Papachristodoulou A, Hepburn C (2013) Analysis and control design of sustainable policies for greenhouse gas emissions. Appl Therm Eng 53(2):420–431. CrossRefGoogle Scholar
  8. 8.
    US Energy Information Administration (2019) Annual energy outlook 2019. Accessed 1 Mar 2019
  9. 9.
    IEA (2019) Improving the fuel economy of road vehicles. Paris, France: IEA: 86, p 2012. Accessed 1 Mar 2019
  10. 10.
    Silva T, Baeta J, Neto N, Malaquias A et al (2017) The use of split-injection technique and ethanol lean combustion on a SIDI engine operation for reducing the fuel consumption and pollutant emissions. SAE technical paper 2017-36-0259, 2017.
  11. 11.
    Qian Y, Guo J, Zhang Y, Tao W, Xingcai L (2018) Combustion and emission behavior of N-propanol as partially alternative fuel in a direct injection spark ignition engine. Appl Therm Eng 144:126–136. CrossRefGoogle Scholar
  12. 12.
    Ji C, Cong X, Wang S, Shi L, Teng S, Wang D (2018) Performance of a hydrogen-blended gasoline direct injection engine under various second gasoline direct injection timings. Energy Convers Manag 171:1704–1711. CrossRefGoogle Scholar
  13. 13.
    Li Q, Liu J, Jianqin F, Zhou X, Liao C (2018) Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Appl Therm Eng 137:710–720. CrossRefGoogle Scholar
  14. 14.
    Li Y, Khajepour A, Devaud C, Liu K (2017) Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system. Appl Energy 206:577–593. CrossRefGoogle Scholar
  15. 15.
    Wang N, Liu J, Chang WL, Lee C-f (2018) A numerical study of the combustion and jet characteristics of a hydrogen fueled turbulent hot-jet ignition (THJI) chamber. Int J Hydrog Energy 43(45):21102–21113. CrossRefGoogle Scholar
  16. 16.
    da Costa RBR, Hernández JJ, Teixeira AF, Netto NAD, Valle RM, Roso VR, Coronado CJR (2019) Combustion, performance and emission analysis of a natural gas-hydrous ethanol dual-fuel spark ignition engine with internal exhaust gas recirculation. Energy Convers Manag 195:1187–1198. CrossRefGoogle Scholar
  17. 17.
    Silva T, Baeta J, Neto N, Malaquias A et al (2017) Split-injection in a downsized ethanol SIDI engine aiming to mitigate pre-ignition. SAE technical paper 2017-36-0266, 2017.
  18. 18.
    Martins D, Frank T, Simas H et al (2018) Structural analysis, survey and classification of kinematic chains for Atkinson cycle engines. J Braz Soc Mech Sci Eng 40:52. CrossRefGoogle Scholar
  19. 19.
    Kakaee AH, Keshavarz M (2017) Simultaneous dynamic optimization of valves timing and waste gate to improve the load step transient response of a turbocharged spark ignition engine. J Braz Soc Mech Sci Eng 39:2383. CrossRefGoogle Scholar
  20. 20.
    Baêta JGC, Silva TRV, Netto NAD, Malaquias ACT, Filho FAR, Pontoppidan M (2018) Full spark authority in a highly boosted ethanol DISI prototype engine. Appl Therm Eng 139:35–46. CrossRefGoogle Scholar
  21. 21.
    Forbes (2019) Seven reasons why the internal combustion engine is a dead man walking. Accessed 1 Mar 2019
  22. 22.
  23. 23.
    ANP – Agência Nacional do Petróleo (2019) Biocombustíveis. Accessed 1 Mar 2019
  24. 24.
    Zangooee Motlagh MR (2015) Numerical study of the effect of ethanol blending with gasoline surrogate on pollutant emission in well-stirred reactor. J Braz Soc Mech Sci Eng 37:1609. CrossRefGoogle Scholar
  25. 25.
    Rajgor G (2016) Greater acceleration of renewables required to meet COP21 goal. Renew Energy Focus 17(5):175–177. CrossRefGoogle Scholar
  26. 26.
    Mayer RM, Poulikakos LD, Lees AR, Heutschi K, Kalivoda MT, Soltic P (2012) Reducing the environmental impact of road and rail vehicles. Environ Impact Assess Rev 32(1):25–32. CrossRefGoogle Scholar
  27. 27.
    Sagar AD (1995) Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction. Environ Impact Assess Rev 15(3):241–274. CrossRefGoogle Scholar
  28. 28.
    EIA – Energy Information Administration (2019) Global transportation energy consumption: examination of scenarios to 2040 using ITEDD. Accessed 1 Mar 2019
  29. 29.
    Iodice P, Senatore A (2016) New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements. Environ Impact Assess Rev 61:61–67. CrossRefGoogle Scholar
  30. 30.
    Palazzo J, Geyer R (2019) Consequential life cycle assessment of automotive material substitution: replacing steel with aluminum in production of north American vehicles. Environ Impact Assess Rev 75:47–58. CrossRefGoogle Scholar
  31. 31.
    Marques DO, Trevizan LSF, Oliveira IMF et al (2017) Combustion assessment of an ethanol/gasoline flex-fuel engine. J Braz Soc Mech Sci Eng 39:1079. CrossRefGoogle Scholar
  32. 32.
    Filippini M, Heimsch F (2016) The regional impact of a CO2 tax on gasoline demand: a spatial econometric approach. Resour Energy Econ 46:85–100. CrossRefGoogle Scholar
  33. 33.
    Nabi MN, Zare A, Hossain FM, Ristovski ZD, Brown RJ (2017) Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends. J Clean Prod 166:860–868. CrossRefGoogle Scholar
  34. 34.
    Ardebili SMS, Solmaz H, Mostafaei M (2019) Optimization of fusel oil–gasoline blend ratio to enhance the performance and reduce emissions. Appl Therm Eng 148:1334–1345. CrossRefGoogle Scholar
  35. 35.
    da Costa RBR, Filho FAR, Coronado CJR, Teixeira AF, Netto NAD (2018) Research on hydrous ethanol stratified lean burn combustion in a DI spark-ignition engine. Appl Therm Eng 139:317–324. CrossRefGoogle Scholar
  36. 36.
    INMETRO – Instituto Nacional de Metrologia (2019) Qualidade e Tecnologia: Programa Brasileiro de Etiquetagem: Tabela de consumo e eficiência energética. Accessed 1 Mar 2019
  37. 37.
    METRO JORNAL (2019) Chevrolet Onix é o carro mais vendido do Brasil em 2018. Accessed 1 Mar 2019
  38. 38.
    Yang H-H, Liu T-C, Chang C-F, Lee E (2012) Effects of ethanol-blended gasoline on emissions of regulated air pollutants and carbonyls from motorcycles. Appl Energy 89(1):281–286. CrossRefGoogle Scholar
  39. 39.
    Li Y, Gong J, Deng Y, Yuan W, Fu J, Zhang B (2017) Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl Therm Eng 115:53–63. CrossRefGoogle Scholar
  40. 40.
    Tutak W, Jamrozik A, Pyrc M, Sobiepański M (2017) A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine. Appl Therm Eng 117:155–163. CrossRefGoogle Scholar
  41. 41.
    Aydın F, Öğüt H (2017) Effects of using ethanol–biodiesel–diesel fuel in single cylinder diesel engine to engine performance and emissions. Renew Energy 103:688–694. CrossRefGoogle Scholar
  42. 42.
    Zhuang Y, Hong G (2014) Effects of direct injection timing of ethanol fuel on engine knock and lean burn in a port injection gasoline engine. Fuel 135:27–37. CrossRefGoogle Scholar
  43. 43.
    Ağbulut Ü, Sarıdemir S, Albayrak S (2019) Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J Braz Soc Mech Sci Eng 41:389. CrossRefGoogle Scholar
  44. 44.
    Huang Y, Hong G, Huang R (2015) Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine. Appl Energy 160:244–254. CrossRefGoogle Scholar
  45. 45.
    Doğan B, Erol D, Yaman H, Kodanli E (2017) The effect of ethanol–gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl Therm Eng 120:433–443. CrossRefGoogle Scholar
  46. 46.
    Thakur AK, Kaviti AK, Mehra R, Mer KKS (2017) Progress in performance analysis of ethanol–gasoline blends on SI engine. Renew Sustain Energy Rev 69:324–340. CrossRefGoogle Scholar
  47. 47.
    Alpanda S, Peralta-Alva A (2010) Oil crisis, energy-saving technological change and the stock market crash of 1973–74. Rev Econ Dyn 13(4):824–842. CrossRefGoogle Scholar
  48. 48.
    Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim Neto HB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47(1):64–76. CrossRefGoogle Scholar
  49. 49.
    ANP – Agência Natural do Petróleo (2019) Etanol. Accessed 1 Mar 2019
  50. 50.
    Governo do Brasil (2019) Entenda o que é e como funciona o RenovaBio. Accessed 1 Mar 2019
  51. 51.
  52. 52.
    Governo do Brasil (2019) Matriz energética. Accessed 1 Mar 2019
  53. 53.
    ANFAVEA – Associação Nacional dos Fabricantes de Veículos Automotores (2019) Licenciamento total de automóveis comerciais leves por combustível. Accessed 1 Mar 2019
  54. 54.
    Governo do Brasil (2019) Rota 2030 vai fortalecer e modernizar a indústria automobilística nacional. Accessed 1 Mar 2019
  55. 55.
    Manochio C (2014) Produção de bioetanol de cana de açúcar, milho e beterraba: uma comparação dos indicadores tecnológicos, ambientais e econômicos, Trabalho de conclusão de curso (Engenharia Química). Universidade Federal de Alfenas, Poços de CaldasGoogle Scholar
  56. 56.
    Franco RL (2016) Análise da Injeção Direta de Etanol em Motor Monocilindro Ótico de Pesquisa. Departamento de Engenharia Mecânica, Centro Federal de Minas Educação Tecnológica - CEFET, Belo Horizonte – MGGoogle Scholar
  57. 57.
    Baêta JGC (2006) Metodologia experimental para maximização do desempenho de um motor multicombustível turboalimentado sem prejuízo à eficiência energética global. Tese de Doutorado. Programa de Pós-graduação em Engenharia Mecânica - UFMG. Belo Horizonte - MGGoogle Scholar
  58. 58.
    Oliveira F, Lepsch F, Silva L, de Brito Oliveira L et al (2015) Warm start robustness improvement using the heated cold start system in flex fuel engines. SAE technical paper 2015-36-0202.
  59. 59.
    Iodice P, Senatore A, Langella G, Amoresano A (2016) Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation. Appl Energy 179:182–190. CrossRefGoogle Scholar
  60. 60.
    Sales LCM, Sodré JR (2012) Cold start characteristics of an ethanol-fuelled engine with heated intake air and fuel. Appl Therm Eng 40:198–201. CrossRefGoogle Scholar
  61. 61.
    Iodice P, Senatore A (2014) Cold start emissions of a motorcycle using ethanol–gasoline blended fuels. Energy Procedia 45:809–818. CrossRefGoogle Scholar
  62. 62.
    Chen R-H, Chiang L-B, Chen C-N, Lin T-H (2011) Cold-start emissions of an SI engine using ethanol–gasoline blended fuel. Appl Therm Eng 31(8–9):1463–1467. CrossRefGoogle Scholar
  63. 63.
    Hemdal S, Denbratt I, Dahlander P, Warnberg J (2009) Stratified cold start sprays of gasoline–ethanol blends. SAE Int J Fuels Lubr 2(1):683–696. CrossRefGoogle Scholar
  64. 64.
    Chapman E, Cummings J, Winston-Galant M (2014) Effects of gasoline and ethanol fuel corrosion inhibitors and fuel detergents on powertrain intake valve deposits. SAE technical paper 2014-01-1383.
  65. 65.
    United States Department of Agriculture (USDA), 2015 energy balance for the corn-ethanol industry. Accessed 2 Nov 2019
  66. 66.
    Soares LHB et al (2009) Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Embrapa Agrobiologia-Circular Técnica (INFOTECA-E)Google Scholar
  67. 67.
    Bento CB, Filoso S, Pitombo LM, Cantarella H, Rossetto R, Martinelli LA, do Carmo JB (2018) Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. J Environ Manag 206:980–988. CrossRefGoogle Scholar
  68. 68.
    FIGUEIREDO (2012) Eduardo Barretto de. Balanço de gases de efeito estufa e emissões de CO2 do solo nos sistemas de colheita da cana-de-açúcar manual queimada e mecanizada crua. Tese de Doutorado, UNESPGoogle Scholar
  69. 69.
    Leal M, Duft D, Hernandes T, Bordonal R (2017) Brazilian sugarcane expansion and deforestation. In: European biomass conference and exhibition proceedings.
  70. 70.
    United States Environmental Protection Agency (EPA) (2019) Emission factors for greenhouse gas inventories. Accessed 1 Nov 2019
  71. 71.
    Instituto Brasileiro de Geografia e Estatística (IBGE) (2017) Censo Agro 2017. Accessed 2 Nov 2019
  72. 72.
    Companhia Nacional de Abastecimento (CONAB) (2018) Acompanhamento da safra brasileira, V. 5 - SAFRA 2018/19 N.1 - Primeiro levantamento, maio 2018, ISSN 2318-7921Google Scholar
  73. 73.
    Balmford A, Amano T, Bartlett H et al (2018) The environmental costs and benefits of high-yield farming. Nat Sustain 1:477–485. CrossRefGoogle Scholar
  74. 74.
    Donke ACG (2016) Avaliação de desempenho ambiental e energético da produção de etanol de cana, milho e sorgo em uma unidade integrada, segundo a abordagem do ciclo de vida. Universidade de São Paulo, Dissertação de MestradoCrossRefGoogle Scholar
  75. 75.
    Feldman B (2019) Motor a combustão é coisa do passado. Accessed 2 Mar 2019
  76. 76.
    Utah Energy (2019) Making energy star certified homes electric vehicle ready. Accessed 2 Mar 2019
  77. 77.
    Autocar (2019) Carlos Tavares: electric cars could be more problematic than people think. Accessed 2 mar 2019
  78. 78.
    USA Today (2019) Tesla’s battery gigafactory hits new output levels. Accessed 2 Mar 2019
  79. 79.
    Biomass Magazine (2019) Gevo to deploy shockwave technology at Luverne plant. Accessed 2 Mar 2019
  80. 80.
    von Sperling E (2012) Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18:110–118. CrossRefGoogle Scholar
  81. 81.
    IEA – International Energy Agency, World gross electricity production by source in 2017. Accessed 1 Mar 2019
  82. 82.
    UCN – Union of Concerned Scientists (2019) Cleaner cars from cradle to grave. Accessed 2 Mar 2019
  83. 83.
    The Guardian (2019) The rise of electric cars could leave us with a big battery waste problem. Accessed 2 Mar 2019
  84. 84.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. CrossRefGoogle Scholar
  85. 85.
    Garcia LC, Ribeiro DB, Oliveira Roque F, Ochoa-Quintero JM, Laurance WF (2017) Brazil’s worst mining disaster: corporations must be compelled to pay the actual environmental costs. Ecol Appl 27:5–9. CrossRefGoogle Scholar
  86. 86.
    European Comision (2018) Comission staff working document: report on raw materials for battery applications. Brussels, 22.11.2018Google Scholar
  87. 87.
    Marin RP, Cruz JRS, Martinez BVT, Vilanova AG (2019) An objective reflexion about the potencial future for diesel vehicles versus arguments based on energy populism. DYNA. CrossRefGoogle Scholar
  88. 88.
    Serrano JR (2017) Imagining the future of the internal combustion engine for ground transport in the current context. Appl Sci 7(10):1001. CrossRefGoogle Scholar
  89. 89.
    Reitz HR et al (2019) IJER editorial: the future of the internal combustion engine. Int J Engine Res. CrossRefGoogle Scholar
  90. 90.
    Anfavea (2019) Publicação mensal da Associação Nacional dos Fabricantes de Veículos Automotores. Accessed 12 May 2019
  91. 91.
    Agência Nacional de Energia Elétrica (ANEEL) (2019) Relatório do acompanhamento das bandeiras tarifárias. Accessed 12 May 2019
  92. 92.
    ANACE – Associação Nacional dos Consumidores de Energia (2019) Grandes apagões viram rotina no Brasil. Accessed 2 Apr 2019
  93. 93.
    IDEC – Instituto Brasileiro de Defesa do Consumidor (2019) Brasil tem problema grave de fornecimento de energia elétrica. Accessed 20 Mar 2019
  94. 94.
    Financial Times (2019) São Paulo drought raises fears of Brazil energy crisis. Accessed 10 May 2019
  95. 95.
    Sanchez Moore CC, Kulay L (2019) Effect of the implementation of carbon capture systems on the environmental, energy and economic performance of the Brazilian electricity matrix. Energies 12:331. CrossRefGoogle Scholar
  96. 96.
    Programa Brasileiro de Etiquetagem Veicular do Inmetro. Accessed 2 Apr 2019
  97. 97.
  98. 98.
    ANP, Sistema de levantamento de preços. Accessed 22 Apr 2019
  99. 99.
    Agência Nacional de Energia Elétrica (ANEEL). Accessed 10 May 2019
  100. 100.
    Shabadin A, Megat N, Jamil H (2014) Car annual vehicle kilometer travelled estimated from car manufacturer data: an improved method. World Res Innov Conv Eng Technol 25:171–180Google Scholar
  101. 101.
    Fathabadi H (2018) Fuel cell hybrid electric vehicle (FCHEV): novel fuel cell/SC hybrid power generation system. Energy Convers Manag 156:192–201. CrossRefGoogle Scholar
  102. 102.
    Saman Ahmadi SMT, Bathaee AHH (2018) Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy. Energy Convers Manag 160(2018):74–84. CrossRefGoogle Scholar
  103. 103.
    WEG (2019) Novo padrão de rendimento dos motores elétricos. Accessed 24 Apr 2019
  104. 104.
    Noce T (2010) Estudo do funcionamento de veículos elétricos e contribuições ao seu aperfeiçoamento. 2009. 127 f. Dissertação (Mestrado em Engenharia Mecânica) - Pontifícia Universidade Católica de Minas Gerais, Belo HorizonteGoogle Scholar
  105. 105.
    Washington Post (2019) Congo cobalt mining for lithium ion battery. Accessed 1 May 2019
  106. 106.
    World Economic Forum (2019) The dirty secret of electric vehicles. Accessed 2 Apr 2019
  107. 107.
    World Economic Forum (2019) The hidden cost of the electric car boom. Accessed 2 Apr 2019
  108. 108.
    Earther (2019) The dirty truth about green batteries. Accessed 20 Apr 2019
  109. 109.
    Euronews (2019) Tesla expects global shortage of electric vehicle battery minerals source. Accessed 4 May 2019
  110. 110.
    Mersky AC, Sprei F, Samaras C, Qian Z (2016) Effectiveness of incentives on electric vehicle adoption in Norway. Transp Res Part D Transp Environ 46:56–68. CrossRefGoogle Scholar
  111. 111.
    World Economic Forum (2019) Norway electric car market vehicle sales. Accessed 3 May 2019
  112. 112.
  113. 113.
    World Economic Forum (2019) Electric cars are still coal powered. Accessed 2 Apr 2019
  114. 114.
    IEA – International Energy Agency (Global EV outlook 2018. Accessed 1 Mar 2019
  115. 115.
    Clean Technica, 2019 US EV sales growth will drop to 12%. Accessed 2 Feb 2019
  116. 116.
    Kalghatgi G (2018) Is it really the end of internal combustion engines and petroleum in transport? Appl Energy 225:965–974. CrossRefGoogle Scholar
  117. 117.
    Minaspetro (2019) UFMG desenvolve motor a etanol que propicia o mesmo consumo de combustível de motores a gasolina. Accessed 2 Mar 2019
  118. 118.
    UFMG (2019) Brasil perdeu o bonde da energia, lamenta pesquisador da UFMG. Accessed 2 Mar 2019
  119. 119.
    Xylia M, Silveira S (2017) On the road to fossil-free public transport: the case of Swedish bus fleets. Energy Policy 100:397–412. CrossRefGoogle Scholar
  120. 120.
    Scania Group (2019) Half of Scania’s Swedish city buses run on ethanol. Accessed 28 Sept 2019
  121. 121.
    Scania Group (2019) Scania receives large order for biofuel buses in Sweden. Accessed 28 Sept 2019
  122. 122.
    Janssen R, Rutz D, Hofer A, Moreira J, Santos S, Coelho ST, Velazquez S, Capaccioli S, Landahl G, Ericson J (2010) Bioethanol as sustainable bus transport fuel in Brazil and Europe. In: 18th European biomass conference and exhibition, 2010, VP4.3.12, pp 1975–1981.
  123. 123.
    Morganti K, Almansour M, Khan A, Kalghatgi G, Przesmitzki S (2018) Leveraging the benefits of ethanol in advanced engine-fuel systems. Energy Convers Manag 157:480–497. CrossRefGoogle Scholar
  124. 124.
    De B, Panua RS (2016) Performance and emission characteristics of diesel and vegetable oil blends in a direct-injection VCR engine. J Braz Soc Mech Sci Eng 38:633. CrossRefGoogle Scholar
  125. 125.
    Xiumin Yu, Guo Z, He L, Dong W, Sun P, Shi W, Yaodong D, He F (2018) Effect of gasoline/n-butanol blends on gaseous and particle emissions from an SI direct injection engine. Fuel 229:1–10. CrossRefGoogle Scholar
  126. 126.
    Zhuang Y, Qian Y, Hong G (2017) The effect of ethanol direct injection on knock mitigation in a gasoline port injection engine. Fuel 210:187–197. CrossRefGoogle Scholar
  127. 127.
    Luo Y, Zhu L, Fang J, Zhuang Z, Guan C, Xia C, Xie X, Huang Z (2015) Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol–gasoline fuel. Appl Therm Eng 89:647–655. CrossRefGoogle Scholar
  128. 128.
    Smith P, Heywood J, Cheng W (2014) Effects of compression ratio on spark-ignited engine efficiency. SAE technical paper 2014-01-2599,.
  129. 129.
    Boretti A (2013) Water injection in directly injected turbocharged spark ignition engines. Appl Therm Eng 52(1):62–68. CrossRefGoogle Scholar
  130. 130.
    Mingrui W, Sa NT, Turkson RF, Jinping L, Guanlun G (2017) Water injection for higher engine performance and lower emissions. J Energy Inst 90(2):285–299. CrossRefGoogle Scholar
  131. 131.
    Luigi T, Daniela T, Fabio B (2017) Development of a virtual calibration methodology for a downsized SI engine by using advanced valve strategies. Energy Procedia 126:923–930. CrossRefGoogle Scholar
  132. 132.
    Carey C, McAllister M, Sandford M, Richardson S, Pierson S, Darnton N, Bredda S, Akehurst S, Brace C, Turner J, Pearson R, Luard N, Martinez-Botas R, Copeland C, Lewis M, Fernandes J (2011) Extreme engine downsizing. In: Innovations in fuel economy and sustainable road transport. Woodhead Publishing, pp. 135–147. ISBN 9780857092137
  133. 133.
    Baêta JGC, Pontoppidan M, Silva TRV (2015) Exploring the limits of a down-sized ethanol direct injection spark ignited engine in different configurations in order to replace high-displacement gasoline engines. Energy Convers Manag 105:858–871. CrossRefGoogle Scholar
  134. 134.
    Venkateswarlu K, Murthy BSR, Subbarao VV (2016) An experimental investigation to study the effect of fuel additives and exhaust gas recirculation on combustion and emissions of diesel–biodiesel blends. J Braz Soc Mech Sci Eng 38:735. CrossRefGoogle Scholar
  135. 135.
    De Serio D, de Oliveira A, Sodré JR (2017) Effects of EGR rate on performance and emissions of a diesel power generator fueled by B7. J Braz Soc Mech Sci Eng 39:1919. CrossRefGoogle Scholar
  136. 136.
    Boretti A (2012) Towards 40% efficiency with BMEP exceeding 30bar in directly injected, turbocharged, spark ignition ethanol engines. Energy Convers Manag 57:154–166. CrossRefGoogle Scholar
  137. 137.
    Bahri B, Aziz AA, Shahbakhti M, Said M, Farid M (2013) Ethanol fuelled HCCI engine: a review. World Acad Sci Eng Technol (WASET) 7(7):670–675Google Scholar
  138. 138.
    Viggiano A, Magi V (2012) A comprehensive investigation on the emissions of ethanol HCCI engines. Appl Energy 93:277–287. CrossRefGoogle Scholar
  139. 139.
    Martins M, Fischer I, Gusberti F (2016) Diesel exhaust heat recovery to promote HCCI of wet ethanol on dedicated cylinders. SAE technical paper 2016-36-0111.
  140. 140.
    Manente V, Johansson B, Tunestal P (2009) Characterization of partially premixed combustion with ethanol: EGR sweeps, low and maximum loads. In: Proceedings of the ASME 2009 internal combustion engine division spring technical conference. ASME 2009 internal combustion engine division spring technical conference, Milwaukee, 3–6 May 2009. ASME, pp 175–190.
  141. 141.
    Kaiadi M, Johansson B, Lundgren M, Gaynor J (2013) Sensitivity analysis study on ethanol partially premixed combustion. SAE Int J Engines 6(1):120–131. CrossRefGoogle Scholar
  142. 142.
    Noh HK, No S-Y (2017) Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode: a review. Appl Energy 208:782–802. CrossRefGoogle Scholar
  143. 143.
    Pedrozo VB, May I, Guan W, Zhao H (2018) High efficiency ethanol-diesel dual-fuel combustion: a comparison against conventional diesel combustion from low to full engine load. Fuel 230:440–451. CrossRefGoogle Scholar
  144. 144.
    Oliveira A, de Morais AM, Valente OS et al (2017) Combustion, performance and emissions of a diesel power generator with direct injection of B7 and port injection of ethanol. J Braz Soc Mech Sci Eng 39:1087. CrossRefGoogle Scholar
  145. 145.
    Chen Z, Wang L, Zeng K (2019) A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. Energy Convers Manag 192:11–19. CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Augusto César Teixeira Malaquias
    • 1
    Email author
  • Nilton Antonio Diniz Netto
    • 1
  • Fernando Antonio Rodrigues Filho
    • 2
  • Roberto Berlini Rodrigues da Costa
    • 3
  • Marcos Langeani
    • 4
  • José Guilherme Coelho Baêta
    • 1
  1. 1.Department of Mechanical EngineeringMobility Technology Center, Federal University of Minas Gerais (CTM-UFMG)Belo HorizonteBrazil
  2. 2.Federal Center for Technological Education of Minas Gerais (CEFET-MG)Belo HorizonteBrazil
  3. 3.Federal University of Itajubá (UNIFEI)ItajubáBrazil
  4. 4.Next - Engine TechnologiesSão José dos CamposBrazil

Personalised recommendations