Advertisement

Vertical velocity in rectangular channel bends: numerical study and development of a prediction formula

  • Meysam Bali
  • Morteza KolahdoozanEmail author
  • Amir Reza Zarrati
  • Majid Jandaghi Alaee
Technical Paper
  • 46 Downloads

Abstract

Up-welling and down-welling are formed in the inner and outer banks of the river bends, respectively. In this paper, a 3D numerical model is employed in order to study the effective parameters on the maximum value of the up-welling (wU(max)) and down-welling (wD(max)) in rectangular channel bends. A numerical model validated by the existing experimental data is applied to investigate the effects of different parameters on wU(max) and wD(max) over a wide range of flow conditions. The results revealed that the relative depth (water depth/bend radius) and bed resistance are the most effective parameters on wU(max) and wD(max), with a direct relationship. Moreover, based on the numerical results, two formulas are proposed for prediction of wU(max) and wD(max). Accuracy metrics such as root-mean-square error, bias and correlation coefficient indicated that the developed formulas can be applied successfully to approximate wU(max) and wD(max) for engineering application.

Keywords

Channel bends Up-welling Down-welling Numerical modeling New formulas 

Notes

Acknowledgements

The authors would like to thank Professor Blanckaert for his valuable dataset. The authors also thank Ebrahim Jafari and Mohammad Peyro for their help in improving the manuscript.

References

  1. 1.
    Bathurst J, Thorne C, Hey R (1977) Direct measurements of secondary currents in river bends. Nature 269(5628):504–506CrossRefGoogle Scholar
  2. 2.
    Garrett C, Loucks H (1976) Upwelling along the Yarmouth shore of Nova Scotia. J Fish Res Board Can 33(1):116–117CrossRefGoogle Scholar
  3. 3.
    Alaee MJ, Ivey G, Pattiaratchi C (2004) Secondary circulation induced by flow curvature and Coriolis effects around headlands and islands. Ocean Dyn 54(1):27–38CrossRefGoogle Scholar
  4. 4.
    Wei M, Blanckaert K, Heyman J, Li D, Schleiss AJ (2016) A parametrical study on secondary flow in sharp open-channel bends: experiments and theoretical modelling. J Hydro-Environ Res 13:1–13CrossRefGoogle Scholar
  5. 5.
    Alaee MJ, Pattiaratchi C, Ivey G (2007) Numerical simulation of the summer wake of Rottnest Island, Western Australia. Dyn Atmos Oceans 43(3–4):171–198CrossRefGoogle Scholar
  6. 6.
    Russell P, Vennell R (2014) Distribution of vertical velocity inferred from secondary flow in a curved tidal channel. J Geophys Res: Oceans 119(9):6010–6023CrossRefGoogle Scholar
  7. 7.
    Rozovskii IL (1957) Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, KievGoogle Scholar
  8. 8.
    Kalkwijk JPT, Booij R (1986) Adaptation of secondary flow in nearly-horizontal flow. J Hydraul Res 24(1):19–37CrossRefGoogle Scholar
  9. 9.
    Blanckaert K, De Vriend HJ (2004) Secondary flow in sharp open-channel bends. J Fluid Mech 498:353–380MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wolanski E, Imberger J, Heron ML (1984) Island wakes in shallow coastal waters. J Geophys Res: Oceans 89(C6):10553–10569CrossRefGoogle Scholar
  11. 11.
    Nikora V, Roy AG (2012) Secondary flows in rivers: theoretical framework, recent advances, and current challenges. Wiley, New York, pp 1–22Google Scholar
  12. 12.
    Blanckaert K (2010) Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour Res 46(9):W09506.  https://doi.org/10.1029/2009WR008303 CrossRefGoogle Scholar
  13. 13.
    Ghobadian R, Mohammadi K (2011) Simulation of subcritical flow pattern in 180 uniform and convergent open-channel bends using SSIIM 3-D model. Water Sci Eng 4(3):270–283Google Scholar
  14. 14.
    Abhari MN, Ghodsian M, Vaghefi M, Panahpur N (2010) Experimental and numerical simulation of flow in a 90 bend. Flow Meas Instrum 21(3):292–298CrossRefGoogle Scholar
  15. 15.
    Deltares (2013) Delft3D-FLOW user manual. Delft, The NetherlandsGoogle Scholar
  16. 16.
    Wang Y, Witten IH (1996) Induction of model trees for predicting continuous classes. In: Proceeding of the poster papers of the european conference on machine learning. University of Economics, Faculty of Informatics Statistics, PragueGoogle Scholar
  17. 17.
    Marciano R, Wang ZB, Hibma A, de Vriend HJ, Defina A (2005) Modeling of channel patterns in short tidal basins. J Geophys Res: Earth Surf.  https://doi.org/10.1029/2003JF000092 CrossRefGoogle Scholar
  18. 18.
    Jones O, Simons R, Jones E, Harris J (2006) Influence of seabed slope and Coriolis effects on the development of sandbanks near headlands. J Geophys Res: Oceans.  https://doi.org/10.1029/2005JC002944 CrossRefGoogle Scholar
  19. 19.
    Bouma T, Van Duren L, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T et al (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont Shelf Res 27(8):1020–1045CrossRefGoogle Scholar
  20. 20.
    Edmonds D, Slingerland R (2007) Mechanics of river mouth bar formation: implications for the morphodynamics of delta distributary networks. J Geophys Res: Earth Surf.  https://doi.org/10.1029/2006JF000574 CrossRefGoogle Scholar
  21. 21.
    Van Maren D (2007) Grain size and sediment concentration effects on channel patterns of silt-laden rivers. Sediment Geol 202(1–2):297–316CrossRefGoogle Scholar
  22. 22.
    Dastgheib A, Roelvink J, Wang Z (2008) Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Mar Geol 256(1–4):90–100CrossRefGoogle Scholar
  23. 23.
    Lesser GR, Roelvink JV, Van Kester J, Stelling G (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915CrossRefGoogle Scholar
  24. 24.
    Sinha S, Borchardt D (2013) Application and validation of TELEMAC-3D: case study of flow in Delft U-shaped channel. TUC 2013:7Google Scholar
  25. 25.
    Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14(2):184–185CrossRefGoogle Scholar
  26. 26.
    Bhattacharya B, Price R, Solomatine D (2007) Machine learning approach to modeling sediment transport. J Hydraul Eng 133(4):440–450CrossRefGoogle Scholar
  27. 27.
    Quinlan JR (1992) Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence. World Scientific, pp 343–348Google Scholar
  28. 28.
    Jung N-C, Popescu I, Kelderman P, Solomatine DP, Price RK (2010) Application of model trees and other machine learning techniques for algal growth prediction in Yongdam reservoir, Republic of Korea. J Hydroinform 12(3):262–274CrossRefGoogle Scholar
  29. 29.
    Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San FranciscozbMATHGoogle Scholar
  30. 30.
    Hamadneh NN, Khan WS, Khan WA (2018) Prediction of thermal conductivities of polyacrylonitrile electrospun nanocomposite fibers using artificial neural network and prey predator algorithm. J King Saud Univ Sci.  https://doi.org/10.1016/j.jksus.2018.03.013 CrossRefGoogle Scholar
  31. 31.
    Khan WS, Hamadneh NN, Khan WA (2017) Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm. PloS one 12(9):0183920  CrossRefGoogle Scholar
  32. 32.
    Hamadneh N, Khan W, Tilahun S (2018) Optimization of microchannel heat sinks using prey-predator algorithm and artificial neural networks. Machines 6(2):26CrossRefGoogle Scholar
  33. 33.
    Etemad-Shahidi A, Yasa R, Kazeminezhad M (2011) Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Appl Ocean Res 33(1):54–59CrossRefGoogle Scholar
  34. 34.
    Etemad-Shahidi A, Ghaemi N (2011) Model tree approach for prediction of pile groups scour due to waves. Ocean Eng 38(13):1522–1527CrossRefGoogle Scholar
  35. 35.
    Etemad-Shahidi A, Bali M (2012) Stability of rubble-mound breakwater using H50 wave height parameter. Coast Eng 59(1):38–45CrossRefGoogle Scholar
  36. 36.
    Kolahdoozan M, Bali M, Rezaee M, Moeini MH (2017) Wave-transmission prediction of pi-type floating breakwaters in intermediate waters. J Coast Res 33(6):1460–1466CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Pouya Tarh Pars Consulting Engineers CompanyTehranIran

Personalised recommendations