Advertisement

A methodology for the performance prediction: flow field and thermal analysis of a helium turboexpander

  • Manoj KumarEmail author
  • Debashis Panda
  • Amitesh Kumar
  • Ranjit K. Sahoo
  • Suraj K. Behera
Technical Paper

Abstract

Helium liquefaction systems are widely used in nuclear fission, superconductivity, space industries, and other scientific instruments. However, the efficiency of these systems is quite low due to the cryogenic operating temperature. In this regard, the one-dimensional design methodology of the helium turbine and nozzle (hereafter, renowned as turboexpander) is important to increase the efficiency of the system. This paper demonstrates the sensitivity analysis and optimal range of non-dimensional design variables on which the radial inflow turbine has maximum efficiency, minimum losses, and maximum power output using artificial intelligence techniques. On this basis, three turboexpander models are developed within the optimal range of predicted non-dimensional variables. After that, a comparative numerical study is carried out to highlight the flow field and thermal characteristics of helium fluid. The standard two equations \(k{-}\omega \) SST model is used to solve the three-dimensional incompressible flow inside the computational domain. The numerical results are validated with the available experimental data from the existing literature. The variation of Mach number, Reynolds number, Prandtl number, static entropy, static enthalpy, temperature, and pressure inside the turboexpander is significantly affected by blade profile which is enormously affected by the design methodology. The study also demonstrates the flow separation region, vortex formation, tip leakage flow, secondary losses, and its reasons along with the spanwise location. The results highlight the importance of the design methodology, sensitivity analysis, the prediction capability of the artificial intelligence network, numerical methodology, and development of the helium turboexpander prototype models.

Keywords

Helium turboexpander Sobol sensitivity analysis Flow pattern Thermal characteristics Artificial intelligence 

List of symbols

b

Blade height \(\left( \mathrm{m}\right) \)

\(b_\mathrm{t}\)

Nozzle height \((\mathrm{m})\)

C

Absolute velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(C_{0}\)

Spouting velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(\mathrm{Ch}_\mathrm{n}\)

Chord length \(\left( \mathrm{m}\right) \)

\(C_\mathrm{mt}\)

Nozzle throat velocity (Meridional component) \((\mathrm{m})\)

\(C_{_{\theta t}}\)

Nozzle throat velocity (Tangential component) \((\mathrm{m})\)

\(c_\mathrm{p}\)

Specific heat capacity \(\left( \mathrm{J}/\mathrm{kg\,K}\right) \)

D

Turbine diameter ratio

\(D_{\mathrm{h}}\)

Hydraulic diameter \(\left( \mathrm{m}\right) \)

\(D_{\mathrm{n}}\)

Diameter of nozzle ring \(\left( \mathrm{m}\right) \)

\(D_{\mathrm{t}}\)

Nozzle throat circle diameter \((\mathrm{m})\)

\(D_{i}\left( Y\right) \)

First-order variance

\(D_{ij}\left( Y\right) \)

Second-order variance

\(d_{\mathrm{s}}\)

Specific diameter

h

Enthalpy \(\left( \mathrm{kJ}/\mathrm{kg}\right) \)

\(k_{0}\)

Thermal conductivity of fluid \(\left( \mathrm{W}/\mathrm{mK}\right) \)

\(L_{\mathrm{t}}\)

Total loss

\(\overset{.}{m}\)

Mass flow rate \((\mathrm{kg}/\mathrm{s})\)

\(n_{\mathrm{s}}\)

Specific speed

P

Power \(\left( \mathrm{kW}\right) \)

p

Pressure \(\left( \mathrm{Pa}\right) \)

\(R_{2}\)

Turbine inlet radius \(\left( \mathrm{m}\right) \)

\(R_{\mathrm{h}}\)

Hub radius \(\left( \mathrm{m}\right) \)

\(R_{\mathrm{s}}\)

Shroud radius \(\left( \mathrm{m}\right) \)

\(r_{\mathrm{p}}\)

Pressure ratio

\(S_{\mathrm{i}}\)

First-order sensitivity index

U

Mean flow velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

u

Blade speed \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(\mathrm{Var}\left( Y\right) \)

Total variance of the output

\(v_{\mathrm{s}}\)

Velocity ratio

W

Relative velocity \(\left( \mathrm{m}/\mathrm{s}\right) \)

\(W_{\mathrm{t}}\)

Throat width \(\left( \mathrm{m}\right) \)

X

Parameters

\(x_{\mathrm{i}}\)

Number of inputs

Y

Target function

Z

Number of blades

\(Z_{\mathrm{r}}\)

Rotor axial length \(\left( \mathrm{m}\right) \)

Greek symbols

\(\alpha \)

Absolute flow angle \((\circ )\)

\(\beta \)

Relative flow angle \((\circ )\)

\(\zeta _{\mathrm{b}}\)

Back friction

\(\zeta _{\mathrm{l}}\)

Leakage loss

\(\varepsilon _{\mathrm{x}}\)

Axial clearance \((\mathrm{m})\)

\(\varepsilon _{\mathrm{r}}\)

Radial clearance \((\mathrm{m})\)

\(\lambda \)

Ratio of rotor outlet to inlet

\(\mu \)

Coefficient of viscosity \(\left( \mathrm{Pa}\,\mathrm{s}\right) \)

\(\Omega \)

Degree of reaction

\(\rho \)

Density \(\mathrm{kg}/\mathrm{m}^{3}\)

\(\psi _{\mathrm{z}}\)

Zweifel number

\(\phi \)

Flow coefficient

\(\psi \)

Stage loading coefficient

\(\chi \)

Absolute meridional velocity

\(\eta _{\mathrm{is}}\)

Isentropic efficiency

\(\omega \)

Rotational speed \(\left( \mathrm{rpm}\right) \)

Subscripts

1

Nozzle inlet

2

Turbine inlet

3

Rotor outlet

\(\mathrm{h}\)

Hub

\(\mathrm{m}\)

Meridional

\(\mathrm{n}\)

Nozzle

\(\mathrm{r}\)

Radial

\(\mathrm{s}\)

Shroud

\(\mathrm{t}\)

Throat

\(\mathrm{z}\)

Axial

\(\theta \)

Tangential

Abbreviations

ANFIS

Adaptive neuro-fuzzy inference system

ANN

Artificial neural network

GA

Genetic algorithms

HEX

Heat exchanger

MAE

Mean absolute error

MF

Membership function

MLP

Multilayer perceptron

ORC

Organic Rankine cycle

PS

Pressure surface

RMSE

Root-mean-squared error

SS

Suction surface

SST

Shear stress transport

TF

Transfer function

TKE

Turbulence kinetic energy

Notes

Acknowledgements

The authors sincerely thank to the Board of Research in Nuclear Sciences (BRNS) (Grant No. 39/23/2015-BRNS/39001), Ministry of Human Resource Development (MHRD), Government of India, and National Institute of Technology, Rourkela for providing the financial support.

Compliance with ethical standards

Conflict of interest

The authors declared that there is no conflict of interest to any person or organization.

References

  1. 1.
    Mito T, Sagara A, Imagawa S, Yamada S, Takahata K, Yanagi N, Chikaraishi H, Maekawa R, Iwamoto A, Hamaguchi S et al (2006) Applied superconductivity and cryogenic research activities in NIFS. Fusion Eng Des 81(20–22):2389–2400CrossRefGoogle Scholar
  2. 2.
    Clavel F, Alamir M, Bonnay P, Barraud A, Bornard G, Deschildre C (2011) Multivariable control architecture for a cryogenic test facility under high pulsed loads: model derivation, control design and experimental validation. J Process Control 21(7):1030–1039CrossRefGoogle Scholar
  3. 3.
    Hall C, Dixon SL (2013) Fluid mechanics and thermodynamics of turbomachinery. Butterworth-Heinemann, OxfordGoogle Scholar
  4. 4.
    Wilson DG, Korakianitis T (2014) The design of high-efficiency turbomachinery and gas turbines. MIT Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Meroni A, Robertson M, Martinez-Botas R, Haglind F (2018) A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines. Energy 164:1062–1078CrossRefGoogle Scholar
  6. 6.
    Da Lio L, Manente G, Lazzaretto A (2017) A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems. Appl Energy 205:187–209CrossRefGoogle Scholar
  7. 7.
    Aungier RH (2006) Aerodynamic design and performance analysis of exhaust diffusers. ASME Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Ino N, Machida A, Ttsugawa K, Arai Y, Matsuki M, Hashimoto H, Yasuda A (1992) Development of high expansion ratio helium turboexpander. In: Advances in cryogenic engineering. Springer, New York, pp 835–844Google Scholar
  9. 9.
    Ghosh SK (2008) Experimental and computational studies on cryogenic turboexpander. Ph.D. thesis, National Institute of Technology RourkelaGoogle Scholar
  10. 10.
    Choudhury BK (2013) Design and construction of turboexpander based nitrogen liquefier. Ph.D. thesisGoogle Scholar
  11. 11.
    Larjola J (1988) ORC power plant based on high speed technology. In: Conference on high speed technology. Lappeenranta, Finland, pp 21–24Google Scholar
  12. 12.
    Kumar M, Panda D, Behera SK, Sahoo RK (2019) Experimental investigation and performance prediction of a cryogenic turboexpander using artificial intelligence techniques. In: Applied thermal engineering, No. 114273Google Scholar
  13. 13.
    Sam AA, Mondal J, Ghosh P (2017) Effect of rotation on the flow behaviour in a high-speed cryogenic microturbine used in helium applications. Int J Refrig 81:111–122CrossRefGoogle Scholar
  14. 14.
    Pei G, Li J, Li Y, Wang D, Ji J (2011) Construction and dynamic test of a small-scale organic Rankine cycle. Energy 36(5):3215–3223CrossRefGoogle Scholar
  15. 15.
    Li X, Lv C, Yang S, Li J, Deng B, Li Q (2019) Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system. Energy 167:106–116CrossRefGoogle Scholar
  16. 16.
    Islamoglu Y, Kurt A, Parmaksizoglu C (2005) Performance prediction for non-adiabatic capillary tube suction line heat exchanger: an artificial neural network approach. Energy Convers Manag 46(2):223–232CrossRefGoogle Scholar
  17. 17.
    Ghorbanian K, Soltani M, Morad M, Ashjaee M (2005) Velocity field reconstruction in the mixing region of swirl sprays using general regression neural network. J Fluids Eng 127(1):14–23CrossRefGoogle Scholar
  18. 18.
    Joly R, Ogaji S, Singh R, Probert S (2004) Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Appl Energy 78(4):397–418CrossRefGoogle Scholar
  19. 19.
    Ghorbanian K, Gholamrezaei M (2009) An artificial neural network approach to compressor performance prediction. Appl Energy 86(7–8):1210–1221CrossRefGoogle Scholar
  20. 20.
    Moraal P, Kolmanovsky I (1999) Turbocharger modeling for automotive control applications. Technical report, SAE technical paperGoogle Scholar
  21. 21.
    Chang Y-Z, Hung K-T, Shih H-Y (2008) Optimizing the swiss-roll recuperator of an innovative micro gas turbine by a surrogate neural network and the multi-objective direct algorithm. In: ASME Turbo Expo 2008: power for land, sea, and air. American Society of Mechanical Engineers, pp 713–721Google Scholar
  22. 22.
    Yu Y, Chen L, Sun F, Wu C (2007) Neural-network based analysis and prediction of a compressor’s characteristic performance map. Appl Energy 84(1):48–55CrossRefGoogle Scholar
  23. 23.
    Fast M, Assadi M, De S (2009) Development and multi-utility of an ANN model for an industrial gas turbine. Appl Energy 86(1):9–17CrossRefGoogle Scholar
  24. 24.
    Bartolini C, Caresana F, Comodi G, Pelagalli L, Renzi M, Vagni S (2011) Application of artificial neural networks to micro gas turbines. Energy Convers Manag 52(1):781–788CrossRefGoogle Scholar
  25. 25.
    Mesbahi E, Assadi M, Torisson T, Lindquist T (2001) A unique correction technique for evaporative gas turbine (evgt) arameters. In: ASME Turbo Expo 2001: power for land, sea, and air. American Society of Mechanical Engineers, pp V004T04A001–V004T04A001Google Scholar
  26. 26.
    Kong C, Ki J (2007) Components map generation of gas turbine engine using genetic algorithms and engine performance Deck data. J Eng Gas Turbines Power 129(2):312–317MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kong C, Kho S, Ki J (2004) Component map generation of a gas turbine using genetic algorithms. In: ASME Turbo Expo 2004: power for land, sea, and air. American Society of Mechanical Engineers, pp 469–474Google Scholar
  28. 28.
    Pasquale D, Ghidoni A, Rebay S (2013) Shape optimization of an organic Rankine cycle radial turbine nozzle. J Eng Gas Turbines Power 135(4):042308CrossRefGoogle Scholar
  29. 29.
    Harinck J, Pasquale D, Pecnik R, van Buijtenen J, Colonna P (2013) Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proc Inst Mech Eng Part A J Power Energy 227(6):637–645CrossRefGoogle Scholar
  30. 30.
    Sam AA, Ghosh P (2017) Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles. Cryogenics 82:1–14CrossRefGoogle Scholar
  31. 31.
    Renu K, Bora NV (2014) Design of helium cryogenic turboexpander. Int J Sci Res Dev 1(11):2321-0613Google Scholar
  32. 32.
    Li S, Krivitzky EM, Qiu X (2016) Meanline modeling of a radial-inflow turbine nozzle with supersonic expansion. In: ASME Turbo Expo 2016: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, pp V02DT42A036–V02DT42A036Google Scholar
  33. 33.
    Sauret E (2012) Open design of high pressure ratio radial-inflow turbine for academic validation. In: ASME 2012 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 3183–3197Google Scholar
  34. 34.
    Li Y, Ren X-D (2016) Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design. Appl Thermal Eng 96:547–554CrossRefGoogle Scholar
  35. 35.
    Yang H, Wen J, Wang S, Li Y, Tu J, Cai W (2017) Sobol sensitivity analysis for governing variables in design of a plate-fin heat exchanger with serrated fins. Int J Heat Mass Transf 115:871–881CrossRefGoogle Scholar
  36. 36.
    Wang X, Zou Z (2019) Uncertainty analysis of impact of geometric variations on turbine blade performance. Energy 176:67–80CrossRefGoogle Scholar
  37. 37.
    Jang J-S, Sun C-T (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406CrossRefGoogle Scholar
  38. 38.
    Schlechtingen M, Santos IF, Achiche S (2013) Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans Sustain Energy 4(3):671–679CrossRefGoogle Scholar
  39. 39.
    Chen Z, Choi Y-D (2015) Influence of air supply on the performance and internal flow characteristics of a cross flow turbine. Renew Energy 79:103–110CrossRefGoogle Scholar
  40. 40.
    Dong B, Xu G, Li T, Quan Y, Zhai L, Wen J (2018) Numerical prediction of velocity coefficient for a radial-inflow turbine stator using R123 as working fluid. Appl Thermal Eng 130:1256–1265CrossRefGoogle Scholar
  41. 41.
    Lei Q, Zhengping Z, Huoxing L, Wei L (2010) Upstream wake-secondary flow interactions in the endwall region of high-loaded turbines. Comput Fluids 39(9):1575–1584CrossRefGoogle Scholar
  42. 42.
    Kumar M, Sahoo R, Behera S (2018) Design and numerical investigation to visualize the fluid flow and thermal characteristics of non-axisymmetric convergent nozzle. Int J Eng Sci Technol 22(1):294–312CrossRefGoogle Scholar
  43. 43.
    Lakshminarayana B (1995) Fluid dynamics and heat transfer of turbomachinery. Wiley, New YorkCrossRefGoogle Scholar
  44. 44.
    Chakravarty A (2011) Recent developments in high speed cryogenic turboexpanders at BARC, Mumbai. In: Asian conference on applied superconductivity and cryogenics, New DelhiGoogle Scholar
  45. 45.
    Zangeneh M, Goto A, Harada H (1998) On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. J Turbomach 120(4):723–735CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.National Institute of Technology RourkelaRourkelaIndia
  2. 2.Indian Institute of Technology VaranasiVaranasiIndia

Personalised recommendations