Advertisement

Stress distribution along the cruciform geometry under pure in-plane biaxial loading condition

  • Abdul Mateen MohammedEmail author
  • Rahamathbaba Sayyadh
  • Venkata Ravi Shankar Dasari
  • Manzoor Hussain Mohammed
Technical Paper
  • 38 Downloads

Abstract

The present paper aims at designing a novel cruciform geometry which could effectively demonstrate the biaxial behavior of aluminum A1050-H14. A cruciform geometry with two geometric shapes milled about the center region on the basic cross-shaped geometry is considered for the present study. The geometric shapes include a double-armed cruciform and a circle but with different depths (geometric-shaped CS-I). An FEA tool is used to study the biaxial behavior of these geometries under two biaxial loading conditions: (1) biaxial tension (TT) and (2) biaxial compression–tension (CT). Along with the above-mentioned geometry, two more geometries are even analyzed to end up with a better geometry for the in-plane biaxial testing. The other two geometries are (1) modified cruciform with spline cut at the cross-arms of the sample and with a straight arm (CS-II), and (2) modified CS-I geometry by tapering the arms (CS-III). The geometry producing (1) uniform von Mises stress, (2) zero or minimal shear stress along the gauge section and (3) initiation of failure about the gauge section is considered.

Keywords

Biaxial stress Cruciform sample Stress relieving FEA Pure biaxial stress 

Notes

Funding

No funding for the present study.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states and declares that there is no conflict of interest.

References

  1. 1.
    Tisza M (2013) Recent development trends in sheet metal forming. Int J Microstruct Mater Prop 8(1/2):125–140Google Scholar
  2. 2.
    Merklein M, Lechner M, Gröbel D, Löffler M, Schneider T, Schulte R, Hildenbrand P (2016) Innovative approaches for controlling the material flow in sheet-bulk metal forming processes. Manuf Rev 3:2.  https://doi.org/10.1051/mfreview/2016001 CrossRefGoogle Scholar
  3. 3.
    Ingarao G, Di Lorenzo R, Micari F (2011) Sustainability issues in sheet metal forming processes: an overview. J Clean Prod 19:337–347CrossRefGoogle Scholar
  4. 4.
    Lefebvre D, Chebl C, Thibodeau L, Khazzari E (1983) A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure. Exp Mech 23:384–392CrossRefGoogle Scholar
  5. 5.
    Found MS, Fernando US, Miller KJ (1985) Requirements of a new multiaxial fatigue testing facility. In: Miller KJ, Brown MW (eds) Multiaxial fatigue, ASTM STP 853. ASTM International, West Conshohocken, pp 11–23CrossRefGoogle Scholar
  6. 6.
    Makinde A, Thibodeau L, Neal KW, Lefebvre D (1992) Design of a biaxial extensiometer for measuring strains in cruciform specimens. Exp Mech 32(6):132–137CrossRefGoogle Scholar
  7. 7.
    Upadhyay MV, Panzner T, Van Petegem S, Van Swygenhoven H (2017) Stresses and strains in cruciform samples deformed in tension. Exp Mech 57:905–920.  https://doi.org/10.1007/s11340-017-0270-6 CrossRefGoogle Scholar
  8. 8.
    Yu Y, Wan M, Wu XD, Zhou XB (2002) Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J Mater Process Technol 123:67–70CrossRefGoogle Scholar
  9. 9.
    Merklein M, Biasutti M (2013) Development of a biaxial tensile machine for characterization of sheet metals. J Mater Process Technol 213:939–946CrossRefGoogle Scholar
  10. 10.
    Kwonz HJ, Xia Z, Jar B (2005) Characterization of biaxial fatigue resistance of polymer plates. J Mater Sci 40(4):965–972CrossRefGoogle Scholar
  11. 11.
    Demmerle S, Boehler JP (1993) Optimal design of biaxial tensile cruciform specimens. J Mech Phys Solids 41(1):143–181CrossRefGoogle Scholar
  12. 12.
    Makris A, Van Hemelrijck D, Ramault C, Zarouchas D, Lamkanfi E, Van Paepegem W (2010) An investigation of the mechanical behavior of carbon epoxy cross ply cruciform specimens under biaxial loading. Polym Compos 31(9):1554–1561CrossRefGoogle Scholar
  13. 13.
    Mateen MA, Ravi Shankar DV, Manzoor Hussain M (2016) Effect of geometrical discontinuities on strain distribution for orthotropic laminates under biaxial loading. J Eng Mater Technol 138:011007CrossRefGoogle Scholar
  14. 14.
    Ohtake Y, Rokugawa S, Masumoto H (1999) Geometry determination of cruciform-type specimen and biaxial tensile test of C/C composites. High Temp Ceram Matrix Compos 164:151–154Google Scholar
  15. 15.
    Cláudio RA, Reis L, Freitas M (2014) Biaxial high-cycle fatigue life assessment of ductile aluminium cruciform specimens. Theor Appl Fract Mech 73:82–90CrossRefGoogle Scholar
  16. 16.
    Terriault P, Settouane K, Brailovski V (2004) Biaxial testing at different temperatures of cruciform Ti–Ni samples. In: Proceedings of the international conference on shape memory and superelastic technologies, ASM International, California, p 247Google Scholar
  17. 17.
    Baptista R, Claudio RA, Reis L et al (2015) Optimization of cruciform specimens for biaxial fatigue loading with direct multi search. Theor Appl Fract Mech 80(Part A):65–72CrossRefGoogle Scholar
  18. 18.
    Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213(2013):961–970CrossRefGoogle Scholar
  19. 19.
    Verma RK, Kuwabara T, Chung K, Haldar A (2011) Experimental evaluation and constitutive modeling of non-proportional deformation for asymmetric steels. Int J Plast 27(2011):82–101CrossRefGoogle Scholar
  20. 20.
    Geiger M, Hußnatter W, Merklein M (2005) Specimen for a novel concept of the biaxial tension test. J Mater Process Technol 167:177–183CrossRefGoogle Scholar
  21. 21.
    Leotoing Lionel, Guines Dominique, Zidane Ibrahim, Ragneau Eric (2013) Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability. J Mater Process Technol 213:856–863CrossRefGoogle Scholar
  22. 22.
    Kulawinski D, Nagel K, Henkel S, Hubner P, Fischer H, Kuna M, Biermann H (2011) Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng Fract Mech 78:1684–1695CrossRefGoogle Scholar
  23. 23.
    Green DE, Neale KW, MacEwen SR, Makinde A, Perrin R (2004) Experimental investigation of the biaxial behaviour of an aluminum sheet. Int J Plast 20:1677–1706CrossRefGoogle Scholar
  24. 24.
    Teaca M, Charpentier I, Martiny M, Ferron G (2010) Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests. Int J Mech Sci 52:572–580CrossRefGoogle Scholar
  25. 25.
    Xiao Rui, Li Xiao-Xing, Lang Li-Hui, Chen Yang-Kai, Yang Yan-Feng (2016) Biaxial tensile testing of cruciform slim superalloy at elevated temperatures. Mater Des 94:286–294CrossRefGoogle Scholar
  26. 26.
    Deng N, Kuwabara T, Korkolis YP (2015) Cruciform specimen design and verification for constitutive identification of anisotropic sheets. Exp Mech.  https://doi.org/10.1007/s11340-015-9999-y CrossRefGoogle Scholar
  27. 27.
    Shlyannikov VN, Tumanov AV, Zakharov AP (2014) The mixed mode crack growth rate in cruciform specimens subject to biaxial loading. Theor Appl Fract Mech 73:68–81CrossRefGoogle Scholar
  28. 28.
    Zidane I, Guines D, Leotoing L, Ragneau E (2010) Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets. Meas Sci Technol 21:055701.  https://doi.org/10.1088/0957-0233/21/5/055701 CrossRefGoogle Scholar
  29. 29.
    Seymen Y, Güler B, Efe M (2016) Large strain and small-scale biaxial testing of sheet metals. Exp Mech 56:1519.  https://doi.org/10.1007/s11340-016-0185-7 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.TKR College of Engineering and TechnologyHyderabadIndia
  2. 2.Nizam Institute of Engineering and TechnologyDeshmukhiIndia
  3. 3.JNTU HyderabadKukatpallyIndia

Personalised recommendations