Advertisement

An experimental investigation of the effects of diode laser surface hardening of AISI 410 stainless steel and comparison with furnace hardening heat treatment

  • Mahmoud MoradiEmail author
  • Hossein Arabi
  • Alexander F. H. Kaplan
Technical Paper
  • 58 Downloads

Abstract

This study investigated the ability of the continuous wave diode laser surface hardening of AISI 410 martensitic stainless steel with a maximum power of 1600 W. Variable process parameters scanning speed (4–7 mm/s), laser power (1200–1600 W) and stand-off distance (65–75 mm) were considered in this study. Microhardness, the geometry of hardened layer (depth and width), microhardness deviation from the base metal microhardness (MHD), microstructure analysis of the laser-hardened zone through optical microscopy and field emission scanning electron microscopy and percentage of the ferrite phase in AISI 410 microstructure by using Clemex software were considered as process output responses. Results confirmed that by increasing the laser power and reducing the scanning speed, the surface hardness and the depth of hardness increase. It is also revealed the width of the hardened area increases by enhancing stand-off distance and reducing the laser power. Maximum hardness of 630 HV0.3 with 2.2 mm depth is obtained. Also, the furnace hardening heat treatment is compared with the laser hardening process. Microstructure, microhardness, and impact tests of the two processes are compared. Results showed that the hardness of the diode laser is 1.4 times the hardness of the furnace hardening heat treatment.

Keywords

Laser surface hardening Diode laser Microhardness AISI 410 martensitic stainless steel Microhardness deviation 

Notes

References

  1. 1.
    Kannatey Asibu E Jr (2009) Principles of laser materials processing, 2nd edn. Wiley, NJ, pp 568–581CrossRefGoogle Scholar
  2. 2.
    Moradi M, Karami Moghadam M, Kazazi M (2019) Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating. Optik 178(February):614–622CrossRefGoogle Scholar
  3. 3.
    Moradi M, Karami Moghadam M (2019) High power diode laser surface hardening of AISI 4130; statistical modeling and optimization. Opt Laser Technol 111(April):554–570CrossRefGoogle Scholar
  4. 4.
    Khorram A, Jafari A, Moradi M (2018) Effect of linear heat input on the morphology and mechanical properties of Ti–6Al–4V welded using a CO2 laser. Lasers Eng 40(1–3):49–64Google Scholar
  5. 5.
    Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C (2017) An investigation on the capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al–Li alloy. Opt Lasers Eng 96:1–6CrossRefGoogle Scholar
  6. 6.
    Khorram A, Jafari A, Moradi M (2017) Laser brazing of 321 and 410 stainless steels using BNI-2 nickel-based filler metal. Modares Mech Eng 17(1):129–135Google Scholar
  7. 7.
    Moradi M, Ghoreishi M, Khorram A (2018) Process and outcome comparison between laser, tungsten inert gas (TIG) and laser-TIG hybrid welding. J Lasers Eng 39(3–6):379–391Google Scholar
  8. 8.
    Moradi M, Mohazabpak A (2018) Statistical modeling and optimization of laser percussion micro-drilling on Inconel 718 sheet using response surface methodology. J Lasers Eng 39(4–6):313–331Google Scholar
  9. 9.
    Moradi M, Mehrabi O, Azdast T, Benyounis KY (2017) Enhancement of low power CO2 laser cutting process for injection molded polycarbonate. Opt Laser Technol 96C:208–218CrossRefGoogle Scholar
  10. 10.
    Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34:231–253CrossRefGoogle Scholar
  11. 11.
    Puli R, Janaki Ram GD (2012) Wear and corrosion performance of AISI 410 martensitic stainless steel coatings produced using friction surfacing and manual metal arc welding. Surf Coat Technol 209(24):1–7CrossRefGoogle Scholar
  12. 12.
    Mahmoudi B, Sabour Aghdam AR, Torkamany MJ (2010) Controlled laser transformation hardening of martensitic stainless steel by pulsed Nd: YAG laser. Electron Sci Technol 8(01):87–90Google Scholar
  13. 13.
    Li R, Jin Y, Li Zh, Qi K (2014) A comparative study of high-power diode laser and CO2 laser surface hardening of AISI 1045 steel. Mater Eng Perform 23(09):3085–3091CrossRefGoogle Scholar
  14. 14.
    Guarino S, Barletta M, Afilal A (2017) High power diode laser (HPDL) surface hardening of low carbon steel: Fatigue life improvement analysis. J Manuf Process 28(01):266–271CrossRefGoogle Scholar
  15. 15.
    Netprasert O, Tangwarodomnukun V, Dumkum Ch (2018) Surface hardening of AISI 420 stainless steel by using a nanosecond pulse laser. Mater Sci Forum 911:44–48CrossRefGoogle Scholar
  16. 16.
    Yazici O, Yilmaz S (2018) Investigation of effect of various processing temperatures on abrasive wear behaviour of high power diode laser treated R260 grade rail steels. Tribol Int 119:222–229CrossRefGoogle Scholar
  17. 17.
    Lesyk DA, Martinez S, Mordyuk BN, Dzhemelinskyi VV, Lamikiz A, Prokopenko GI, Grinkevych KE, Tkachenko IV (2018) Laser-hardened and ultrasonically peened surface layers on tool steel AISI D2: correlation of the bearing curves’ parameters, hardness and wear. J Mater Eng Perform 27(02):764–776CrossRefGoogle Scholar
  18. 18.
    Syed B, Shariff SM, Padmanabham G, Lenka Sh, Bhattacharya B, Kundu S (2017) Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet. Mater Sci Eng A 685:168–177CrossRefGoogle Scholar
  19. 19.
    Barka N, Brousseau J (2018) Case study of laser hardening process applied to 4340 steel cylindrical specimens using simulation and experimental validation. Case Stud Therm Eng 11:15–25CrossRefGoogle Scholar
  20. 20.
    Telasang G, Majumdar JD, Padmanabham G, Manna I (2015) Wear and corrosion behavior of laser surface engineered AISI H13 hot-working tool steel. Surf Coat Technol 261(01):69–78CrossRefGoogle Scholar
  21. 21.
    Idan AFI, Akimov O, Golovco L, Goncharuk O, Kostyk K (2016) The study of the influence of laser hardening conditions on the change in properties of steel. Iadn 2(5):69–73Google Scholar
  22. 22.
    Safdar Sh, Li L, Sheikh MA, Schmidt MJ (2004) Modelling the effect of laser beam geometry on laser surface heating of metallic materials. In: Proceedings of the 23 international congress on applications of lasers and electro-opticsGoogle Scholar
  23. 23.
    Moradi M, KaramiMoghadam M, Zarei J, Ganji B (2017) The effects of gha laser pulse energy and focal point position on laser surface hardening of AISI 410 stainless steel. Modares Mech Eng 17(7):311–318Google Scholar
  24. 24.
    Jenabali Jahromi SA, Khajeh A, Mahmoudi B (2012) Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser. Mater Des 34:857–862CrossRefGoogle Scholar
  25. 25.
    Sun P, Li Sh, Yu G, He X, Zheng C, Ning W (2014) Laser surface hardening of 42CrMo cast steel for obtaining a wide and uniform hardened layer by shaped beams. Int J Adv Manuf Technol 70:787–796CrossRefGoogle Scholar
  26. 26.
    Ehlers B, Herfurth HJ, Heinemann S (2000) Hardening and welding with high power diode lasers. Proc SPIE 3945:63–70CrossRefGoogle Scholar
  27. 27.
    Li R, Jin Y, Li Zh, Qi K (2014) A comparative study of high-power diode laser and CO2 laser surface hardening of AISI 1045 steel. JMEPEG 23:3085–3091CrossRefGoogle Scholar
  28. 28.
    Moradi M, Fallah MM, Jamshidi Nasab S (2018) Experimental study of surface hardening of AISI 420 martensitic stainless steel using high power diode laser. Trans Indian Inst Metal 71(8):2043–2050CrossRefGoogle Scholar
  29. 29.
    Haddadi E, Moradi M, Karimzad Ghavidel A, Karimzad Ghavidel A, Meiabadi S (2019) Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene. Optik 184:103–114CrossRefGoogle Scholar
  30. 30.
    Jung B, Lee H, Park H (2013) Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory. Int J Solids Struct 50:2719–2724CrossRefGoogle Scholar
  31. 31.
    Liu X, Yuan F, Wei Y (2013) Grain size effect on the hardness of nanocrystal measured by the nano-size indenter. Appl Surf Sci 279:159–166CrossRefGoogle Scholar
  32. 32.
    Jelokhani-Niaraki MR, Mostafa Arab NB, Naffakh-Moosavy H, Ghoreishi M (2016) The systematic parameter optimization in the Nd:YAG laser beam welding of Inconel 625. Int J Adv Manuf Technol 84(9–12):2537–2546CrossRefGoogle Scholar
  33. 33.
    Moradi M, Arabi H, Jamshidi Nasab S, Benyounis KY (2019) A comparative study of laser surface hardening of AISI 410 and 420 martensitic stainless steels by using diode laser. Opt Laser Technol 111:347–357CrossRefGoogle Scholar
  34. 34.
    Salemi Golezani A (2013) The effect of microstructure on estimation of the fracture toughness (KIC) rotor steel using charpy absorbed energy (CVN). J Adv Mater Process 1(3):11–17Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Mahmoud Moradi
    • 1
    • 2
    Email author
  • Hossein Arabi
    • 1
    • 2
  • Alexander F. H. Kaplan
    • 3
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringMalayer UniversityMalayerIran
  2. 2.Laser Materials Processing Research CentreMalayer UniversityMalayerIran
  3. 3.Department of Engineering Sciences and MathematicsLulea University of TechnologyLuleåSweden

Personalised recommendations