Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law

  • 103 Accesses


The present communication addresses the magnetoperistalsis of Jeffrey nanomaterial in a vertical asymmetric compliant channel walls. Flow modeling is based upon mixed convection, non-Darcy’s resistance, thermal radiation, Brownian motion and thermophoresis, chemical reaction and activation energy. Nonlinear thermal radiation is taken instead of classical linear radiation consideration. Buongiorno model is used for nanofluid analysis. Channel boundaries are associated with no-slip, compliant characteristics and convective heat and mass transfer effects. Lubrication approach is followed and problems are numerically solved. Quantities of interest are analyzed physically. It is observed that velocity enhances for Hall and Darcy parameters. Temperature decreases with radiation parameter. It is found that concentration increases by increasing activation energy parameter.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


\(\left( {\tilde{u},\tilde{v}} \right)\) :

Velocity components in dimensional form

\(\left( {\tilde{x},\tilde{y}} \right)\) :

Coordinate axes in dimensional form

\(H_{1} , H_{2}\) :

Lower and upper wall shapes

\(h_{1} , h_{2}\) :

Wall shapes in wave frame

\(\lambda\) :

Wave length

\(\hat{p}\) :

Pressure in

\(\phi_{1}\) :

Phase difference

\({\mathbf{J}}\) :

Joule current

\({\mathbf{B}}\) :

Magnetic field

\(B_{0}\) :

Constant transverse magnetic field

\(a_{1} , b_{1}\) :

Amplitudes of upper and lower waves

\(\tilde{t}\) :


\(\varvec{\tau}\) :

Cauchy stress tensor

\(\varvec{A}\) :

First Rivlin–Ericksen tensor

\(S_{{\tilde{x}\tilde{x}}} ,\,S_{{\tilde{x}\tilde{y}}} ,\,S_{{\tilde{y}\tilde{y}}}\) :

Components of extra stress tensor

\(\tau^{\prime }\) :

Tension in membrane

\(d^{{^{\prime } }}\) :

Viscous damping coefficient

\(k_{1}\) :

Permeability of porous media

\(q_{r}\) :

Radiative heat flux

\(\beta_{1}^{{^{\prime } }}\), \(\beta_{2}^{{^{\prime } }}\) :

Heat transfer coefficients

\(T_{0}\), \(T_{1}\) :

Constant temperatures of walls

\(k_{r}^{2}\) :

Chemical reaction

\(D_{B}\) :

Thermophoresis diffusion coefficients

\(\psi\) :

Stream function

Re :

Reynolds number


Hartmann number

\(E_{1}\), \(E_{2}\), \(E_{3}\) :

Compliant wall parameters

Pr :

Prandt number

\(Br\) :

Brinkmann number

\(N_{b}\) :

Brownian motion parameter

\(G_{c}\), \(G_{r}\) :

Mass and thermal Grashof numbers

\(\lambda_{1}\) :

Ratio of relaxation to retardation number

\(R_{n}\) :

Radiation parameter

\(N_{t}\) :

Thermophoresis parameter

\(\beta_{1}\), \(\beta_{2}\) :

Convective heat Biot numbers

\(\gamma_{1}\), \(\gamma_{2}\) :

Convective mass Biot numbers

\(E\) :

Activation energy parameter

\(\phi\) :

Dimensionless concentration

\(\left( {u, v} \right)\) :

Velocity components in dimensionless form

\(\left( {x,y} \right)\) :

Coordinate axes in dimensionless form

\(\alpha , \beta\) :

Coefficients of thermal and concentration expansion

\(\varvec{g}\) :

Gravity vector

\(d_{1}\), \(d_{2}\) :

Channel widths

\(\rho_{f}\), \(\rho_{p}\) :

Densities of base and nanoparticle

\(\kappa\) :

Thermal conductivity

\(\mu\) :

Dynamic viscosity

\(C_{f}\), \(C_{p}\) :

Specific heats of base fluid and nanoparticle

\(T\), \(C\) :

Temperature and concentration of fluid

\(\varvec{I}\) :

Identity tensor

\(\varvec{S}\) :

Extra stress tensor

\(\frac{d}{{{\text{d}}t}}\) :

Material derivative

\(\sigma\) :

Electric conductivity

\(m^{\prime }\) :

Mass per unit area

\(p_{0}\) :

Pressure on the outside wall

\(T_{m}\) :

Fluid mean temperature

\(\gamma_{1}^{{^{\prime } }}\), \(\gamma_{2}^{{^{\prime } }}\) :

Mass transfer coefficients

\(C_{0}\), \(C_{1}\) :

Constant concentration on walls

\(E_{a}\) :

Activation energy

\(D_{B}\) :

Brownian motion coefficient

\(\delta\) :

Wave number

\(D_{a}\) :

Darcy resistance

\(m\) :

Hall parameter

\(E_{c}\) :

Eckert number

\(N_{t}\) :

Thermophoresis parameter

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(n\) :

Fitted rate constant

\(a\), \(b\) :

Amplitude in dimensionless form

\(S_{c}\) :

Schmidt number

\(\xi\) :

Dimensionless chemical reaction

\(\theta\) :

Dimensionless temperature

\(p\) :

Dimensionless pressure

\(\lambda_{2}\) :

Retardation time

\(k^{*}\) :

Mass spectral absorption coefficient

\(k\) :

Boltzmann constant

\(d\) :

Dimensionless width


  1. 1.

    Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, Lemont

  2. 2.

    Hashmi MM, Hayat T, Alsaedi A (2012) On the analytic solutions for squeezing flow of nanofluid between parallel disks. J Nonliner Anal Model Control 17(4):418–430

  3. 3.

    Mustafa M, Hina S, Hayat T, Alsaedi A (2012) Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. J Heat Mass Transf 55(17–18):4871–4877

  4. 4.

    Abbasi FM, Gul M, Shehzad SA (2018) Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity. J Phys E Low-dimens Syst Nanostruct 99:275–284

  5. 5.

    Reddy MG, Reddy KV (2015) Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls. Proc Eng 127:1002–1009

  6. 6.

    Farooq S, Hayat T, Alsaedi A, Ahmad B (2017) Numerically framing the features of second order velocity slip in mixed convective flow of Sisko nanomaterial considering gyrotactic microorganisms. J Heat Mass Transf 112:521–532

  7. 7.

    Latham TW (1966) Fluid motions in a peristaltic pump. M.Sc. Thesis, MIT, Cambridge, MA

  8. 8.

    Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37(4):799–825

  9. 9.

    Hayat T, Zahir H, Alsaedi A, Ahmad B (2017) In Peristaltic flow of rotating couple stress fluid in a non-uniform channel. J Res Phys 7:2865–2873

  10. 10.

    Lew HS, Fung YC, Lowenstein CB (1971) Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristalsis of the small intestine). J Biomech 4(4):297–315

  11. 11.

    Al-Khafajy DG, Abdulhadi AM (2014) Effects of MHD and wall properties on the peristaltic transport of a Carreau fluid through porous medium. J Adv Phys 6(2):1106–1121

  12. 12.

    Tripathi D, Pandey SK, Das S (2010) Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. J Appl Math Comput 215(10):3645–3654

  13. 13.

    Mekheimer KS (2008) Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. J Phys A Stat Mech Appl 387(11):2403–2415

  14. 14.

    Hayat T, Ali N (2006) On mechanism of peristaltic flows for power-law fluids. Phys A 371(2):188–194

  15. 15.

    Mekheimer KS (2004) Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. J Appl Maths Comput 153(3):763–777

  16. 16.

    Akram S, Nadeem S (2013) Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions. J Magn Magn Mater 328:11–20

  17. 17.

    Hayat T, Farooq S, Mustafa M, Ahmad B (2017) Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects. J Res Phys 7:2000–2011

  18. 18.

    Reddy MG, Makinde OD (2016) Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq 223:1242–1248

  19. 19.

    Hayat T, Javed M, Ali N (2008) MHD peristaltic transport of a Jeffery fluid in a channel with compliant walls and porous space. J Transp Porous Media 74(3):259–274

  20. 20.

    Tripathi D (2013) Study of transient peristaltic heat flow through a finite porous channel. J Math Comput Model 57(5–6):1270–1283

  21. 21.

    Eldesoky IM, Mousa AA (2010) Peristaltic flow of a compressible non-Newtonian Maxwellian fluid through porous medium in a tube. J Biomath 3(02):255–275

  22. 22.

    Mekheimer KS, Komy SR, Abdelsalam SI (2013) Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel. J Chin Phys B 22(12):124702

  23. 23.

    Vajravelu K, Sreenadh S, Lakshminarayana P (2011) The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. J Commun Nonliner Sci Numer Simul 16(8):3107–3125

  24. 24.

    Asghar S, Hussain Q, Hayat T, Alsaedi A (2015) Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions. J Appl Mech Tech Phys 56(4):580–589

  25. 25.

    Ramesh K (2016) Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel. J Mol Liq 219:256–271

  26. 26.

    Bhatti MM, Zeeshan A, Ijaz N, Ellahi R (2017) Heat transfer and inclined magnetic field analysis on peristaltically induced motion of small particles. J Braz Soc Mech Sci Eng 39(9):3259–3267

  27. 27.

    Bhatti MM, Zeeshan A, Ellahi R, Shit GC (2018) Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. J Adv Powd Tech 29(5):1189–1197

  28. 28.

    Bhatti MM, Zeeshan A, Ellahi R (2017) Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. J Microvasc Res 110:32–42

  29. 29.

    Ijaz N, Zeeshan A, Bhatti MM, Ellahi R (2018) Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J Mol Liq 250:80–87

  30. 30.

    Bhatti MM, Zeeshan A, Ellahi R, Ijaz N (2017) Heat and mass transfer of two-phase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J Mol Liq 230:237–246

  31. 31.

    Hsiao KL (2017) To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. J Energy 130:486–499

  32. 32.

    Anuradha S, Yegammai M (2017) MHD radiative boundary layer flow of nanofluid past a vertical plate with effects of binary chemical reaction and activation energy. J Pure Appl Math 13:6377–6392

  33. 33.

    Khan MI, Hayat T, Khan MI, Alsaedi A (2018) Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int Commun Heat Mass Transf 91:216–224

  34. 34.

    Hayat T, Farooq S, Ahmad B, Alsaedi A (2018) Consequences of variable thermal conductivity and activation energy on peristalsis in curved configuration. J Mol Liq 263:258–267

  35. 35.

    Noreen S, Saleem M (2016) Soret and Dufour effects on the MHD peristaltic flow in a porous medium with thermal radiation and chemical reaction. J Heat Transf Res 47(1):1–28

  36. 36.

    Ayub S, Hayat T, Asghar S, Ahmad B (2017) Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid. J Res Phys 7:3687–3695

  37. 37.

    Kothandapani M, Prakash J (2015) Influence of heat source, thermal radiation, and inclined magnetic field on peristaltic flow of a hyperbolic tangent nanofluid in a tapered asymmetric channel. J IEEE Trans Nanobiosci 14(4):385–392

  38. 38.

    Hayat T, Shafique M, Tanveer A, Alsaedi A (2016) Radiative peristaltic flow of Jeffrey nanofluid with slip conditions and Joule heating. J PLoS ONE 11(2):e0148002

  39. 39.

    Hussain Q, Latif T, Alvi N, Asghar S (2018) Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium. J Res Phys 9:121–134

  40. 40.

    Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A (2017) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. J Eng Sci Tech 20(3):1129–1139

  41. 41.

    Bhatti MM, Zeeshan A, Ellahi R (2016) Study of heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dusty fluid. J Theor Appl Mech 46(3):75–94

  42. 42.

    Hayat T, Yasmin H, Ahmad B, Chen B (2014) Simultaneous effects of convective conditions and nanoparticles on peristaltic motion. J Mol Liq 193:74–82

  43. 43.

    Farooq S, Hayat T, Ahmad B, Alsaedi A (2018) MHD flow of Eyring-Powell liquid in convectively curved configuration. J Braz Soc Mech Sci Eng 40(3):159

  44. 44.

    Sayed HM, Aly EH, Vajravelu K (2016) Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex Eng J 55(3):2209–2220

  45. 45.

    Hayat T, Farooq S, Alsaedi A, Ahmad B (2016) Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer. J Magn Magn Mater 412:207–216

  46. 46.

    Mittra TK, Prasad SN (1973) On the influence of wall properties and Poiseuille flow in peristalsis. J Biomech 6(6):681–693

Download references

Author information

Correspondence to S. Farooq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Cezar Negrao, PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Bibi, F., Farooq, S. et al. Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law. J Braz. Soc. Mech. Sci. Eng. 41, 296 (2019) doi:10.1007/s40430-019-1771-2

Download citation


  • Jeffrey nanoliquid
  • Convective boundary condition
  • Nonlinear radiative heat flux
  • Energy activation
  • Non-Darcy’s resistance