Advertisement

Study of the rise of a single/multiple bubbles in quiescent liquids using the VOF method

  • Wassim Abbassi
  • Sonia BesbesEmail author
  • Habib Ben Aissia
  • Jean Yves Champagne
Technical Paper
  • 103 Downloads

Abstract

In this paper, computational fluid dynamics was used to study the dynamics of a single and multiple bubbles in quiescent liquids using the volume of fluid method. The effect of liquid viscosity, bubbles size and initial bubbles configuration on the bubbles dynamics and interactions was investigated. It is found that the bubble rising trajectory changes from rectilinear to zigzag trajectory as liquid viscosity decreases. The different behaviors of bubbles introduce various liquid flow structures. For three bubbles rising side by side, the magnitude of bubble shape oscillations increases compared to the case of a single bubble. This is due to the fluctuations in liquid phase velocity fields which were induced by the liquid flow around the two neighboring bubbles. However, for two in-line bubbles with different sizes, the larger bubble always has a strong effect on the smaller one for each initial configuration.

Keywords

Volume of fluid (VOF) method Two-phase flows Bubble dynamics Liquid flow structure Bubble interactions 

List of symbols

Db

Bubble diameter (m)

Dor

Orifice diameter (m)

E

Bubble aspect ratio

Eo

Eötvös number (\( Eo = \left( {\rho_{\text{l}} - \rho_{\text{g}} } \right)gD_{\text{b}}^{2} /\sigma \))

FS

Surface tension force (N/m3)

g

Gravity acceleration (m/s2)

h

Bubble height (m)

k

Local surface curvature

kexact

Exact curvature

Mo

Morton number (\( Mo = g\mu_{\text{l}}^{4} \Delta \rho /\rho_{\text{l}}^{2} \sigma^{3} \))

\( \hat{n} \)

Unit surface normal vector

P

Pressure (Pa)

Δp

Pressure difference between the inside and outside of the bubble (Pa)

Δpexact

Exact pressure jump (Pa)

Qg

Gas flow rate (m3/s)

Rb

Bubble radius (m)

Re

Reynolds number (\( Re = \rho_{\text{l}} U_{\text{b}} D_{\text{b}} /\mu_{\text{l}} ) \)

S0

Initial center-to-center separation distance (m)

\( S_{0}^{*} \)

Dimensionless initial separation distance (S0/Db)

t

Time (s)

Δt

Time interval between two sequences (s)

ΔT

Time step (s)

\( \vec{u} \)

Velocity vector (m/s)

w

Bubble width (m)

We

Weber number (\( We = \rho_{l} U_{b}^{2} D_{b} /\sigma \))

X, Y

Cartesian coordinate (m)

Greek letters

α

Volume fraction (dimensionless)

μ

Viscosity (Pa s)

ρ

Density (kg/m3)

σ

Surface tension (N/m)

Subscripts

b

Bubble

c

Coalescence

g

Gas phase

l

Liquid phase

Notes

References

  1. 1.
    Lunde K, Perkins RJ (1998) Shape oscillations of rising bubbles. Appl Sci Res 58:387–408CrossRefGoogle Scholar
  2. 2.
    Tomiyama A, Celata GP, Hosokawa S, Yoshida S (2002) Terminal velocity of single bubbles in surface tension force dominant regime. Int J Multiph Flow 28:1497–1519CrossRefGoogle Scholar
  3. 3.
    Wu M, Gharib M (2002) Experimental studies on the shape and path of small air bubbles rising in clean water. Phys Fluids 14:L49–L52CrossRefGoogle Scholar
  4. 4.
    Aoyama S, Hayashi K, Hosokawa S, Tomiyama A (2016) Shapes of ellipsoidal bubbles in infinite stagnant liquids. Int J Multiph Flow 79:23–30MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ma D, Liu M, Zu Y, Tang C (2012) Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chem Eng Sci 72:61–77CrossRefGoogle Scholar
  6. 6.
    Liu Z, Zheng Y, Jia L, Zhang Q (2005) Study of bubble induced flow structure using PIV. Chem Eng Sci 60:3537–3552CrossRefGoogle Scholar
  7. 7.
    Liu L, Yan H, Zhao G (2015) Experimental studies on the shape and motion of air bubbles in viscous liquids. Exp Therm Fluid Sci 62:109–121CrossRefGoogle Scholar
  8. 8.
    Abbassi W, Besbes S, El Hajem M, Ben Aissia H, Champagne JY (2018) Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF). Comput Fluids 161:47–59MathSciNetCrossRefGoogle Scholar
  9. 9.
    Buwa Vivek V, Gerlach D, Durst F, Schlücker E (2007) Numerical simulations of bubble formation on submerged orifices: period-1 and period-2 bubbling regimes. Chem Eng Sci 62:7119–7132CrossRefGoogle Scholar
  10. 10.
    Brucker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zenit R, Magnaudet J (2009) Measurements of the streamwise vorticity in the wake of an oscillating bubble. Int J Multiph Flow 35:195–203CrossRefGoogle Scholar
  12. 12.
    Saffman PG (1956) On the rise of small air bubbles in water. J Fluid Mech 1:249–275CrossRefGoogle Scholar
  13. 13.
    Tripathi MK, Sahu KC, Govindarajan R (2015) Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun 6:6268CrossRefGoogle Scholar
  14. 14.
    Sharaf DM, Premlata AR, Tripathi MK, Karri B, Sahu KC (2017) Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids 29:122104CrossRefGoogle Scholar
  15. 15.
    Tripathi MK, Sahu KC, Govindarajan R (2014) Why a falling drop does not in general behave like a rising bubble. Sci Rep (NATURE PUBLISHING GROUP) 4:4771Google Scholar
  16. 16.
    Ohta M, Yamaguchi S, Yoshida Y, Sussman M (2010) The sensitivity of drop motion due to the density and viscosity ratio. Phys Fluids 22:072102CrossRefGoogle Scholar
  17. 17.
    Ohta M, Akama Y, Yoshida Y, Sussman M (2014) Influence of the viscosity ratio on drop dynamics and breakup for a drop rising in an immiscible low-viscosity liquid. J Fluid Mech 752:383–409.  https://doi.org/10.1017/jfm.2014.339 CrossRefGoogle Scholar
  18. 18.
    Agrawal M, Premlata AR, Tripathi MK, Karri B, Sahu KC (2017) Nonspherical liquid droplet falling in air. Phys Rev E 95:033111CrossRefGoogle Scholar
  19. 19.
    Gumulya M, Utikar RP, Evans GM, Joshi JB, Pareek V (2017) Interaction of bubbles rising inline in quiescent liquid. Chem Eng Sci 166:1–10CrossRefGoogle Scholar
  20. 20.
    Watanbe M, Sanada T (2006) In-line motion of a pair of bubble in a viscous liquid. JSME Int J, Ser B 49:410–418CrossRefGoogle Scholar
  21. 21.
    Yuan H, Prosperetti A (1994) On the in-line motion of two spherical bubbles in a viscous fluid. J Fluid Mech 278:325–349CrossRefGoogle Scholar
  22. 22.
    Legendre D, Magnaudet J, Mougin G (2003) Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid. J Fluid Mech 497:133–166MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu Z, Yang H, Fan LS (2011) Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method. Chem Eng Sci 66:3441–3451CrossRefGoogle Scholar
  24. 24.
    Katz J, Meneveau C (1996) Wake-induced relative motion of bubbles rising in line. Int J Multiph Flow 22:239–258CrossRefGoogle Scholar
  25. 25.
    Ruzicka MC (2000) On bubbles rising in line. Int J Multiph Flow 26:1141–1181CrossRefGoogle Scholar
  26. 26.
    Ramírez-Muñoz J, Baz-Rodríguez S, Salinas-Rodríguez E, Castellanos-Sahagún E, Puebla H (2013) Forces on aligned rising spherical bubbles at low-to-moderate Reynolds number. Phys Fluids 25:093303CrossRefGoogle Scholar
  27. 27.
    Chakraborty I, Biswas G, Ghoshdastidar PS (2013) A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int J Heat Mass Transf 58:240–259CrossRefGoogle Scholar
  28. 28.
    Tripathi MK, Premlata AR, Sahu KC, Govindarajan R (2017) Two initially spherical bubbles rising in quiescent liquid. Phys Rev Fluids 2:073601CrossRefGoogle Scholar
  29. 29.
    Li Y, Zhang JP, Fan LS (2000) Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column. Chem Eng Sci 55:4597–4609CrossRefGoogle Scholar
  30. 30.
    Yujie Z, Mingyan L, Yonggui X, Can T (2012) Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns. Chem Eng Sci 73:55–78CrossRefGoogle Scholar
  31. 31.
    Debar R (1974) Fundamentals of the KRAKEN code, Technical Report UCIR-760, Lawrence Livermore National LaboratoryGoogle Scholar
  32. 32.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefGoogle Scholar
  33. 33.
    Delnoij E, Kuipers JAM, van Swaaij WPM (1997) Computational fluid dynamics applied to gas–liquid contactors. Chem Eng Sci 52:3623–3638CrossRefGoogle Scholar
  34. 34.
    Krishna R, van Baten JM (2001) Scaling up bubble column reactors with the aid of CFD. Chem Eng Res Des 79:283–309CrossRefGoogle Scholar
  35. 35.
    Valencia A, Cordova M, Ortega J (2002) Numerical simulation of gas bubbles formation at a submerged orifice in a liquid. Int Commun Heat Mass Transf 29:821–830CrossRefGoogle Scholar
  36. 36.
    Brackbill JU, Kothe DB, Zemach CA (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRefGoogle Scholar
  37. 37.
    Cano-Lozano JC, Bohorquez P, Martinez-Bazan C (2013) Wake instability of a fixed axisymmetric bubble of realistic shape. Int J Multiph Flow 51:11–21CrossRefGoogle Scholar
  38. 38.
    Abbassi W, Besbes S, El Hajem M, Ben Aissia H, Champagne JY (2017) Influence of operating conditions and liquid phase viscosity with volume of fluid method on bubble formation process. Eur J Mech B Fluids 65:284–298MathSciNetCrossRefGoogle Scholar
  39. 39.
    Dietrich N, Mayoufi N, Poncin S, Midoux N, Li Huai Z (2013) Bubble formation at an orifice: a multiscale investigation. Chem Eng Sci 92:118–125CrossRefGoogle Scholar
  40. 40.
    Jamialahmadi M, Zehtaban MR, Muller-steinhagen H, Sarrafi A, Smith JM (2001) Study of bubble formation under constant flow conditions. Chem Eng Res Des 79:523–532CrossRefGoogle Scholar
  41. 41.
    Bunner B, Tryggvason G (2003) Effect of bubble deformation on the properties of bubbly flows. J Fluid Mech 495:77–118MathSciNetCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Wassim Abbassi
    • 1
  • Sonia Besbes
    • 1
    Email author
  • Habib Ben Aissia
    • 1
  • Jean Yves Champagne
    • 2
  1. 1.Laboratory of Metrology and Energy Systems (LMES)National School of Engineers (ENIM)MonastirTunisia
  2. 2.Laboratory of Fluid Mechanics and Acoustics (LMFA)National Institute of Applied Science (INSA), LyonVilleurbanne CedexFrance

Personalised recommendations