Advertisement

A potential alternative CFD simulation for steady Carreau–Bird law-based shear thickening model: Part-I

  • Khalil Ur RehmanEmail author
  • M. Y. Malik
  • R. Mahmood
  • N. Kousar
  • Iffat Zehra
Technical Paper
  • 41 Downloads

Abstract

The current article provides the numerical investigation into an infinite-length circular cylinder placed as an obstacle in the flow of non-Newtonian fluid. To be more specific, a channel of length 2.2 m and height 0.41 m is considered. The Power law fluid model is carried out with Carreau–Bird law as a non-Newtonian fluid model, and both the Power law linear (constant) and parabolic velocity profiles are initiated simultaneously at an inlet of the channel. The right wall as an outlet is carried with Neumann condition. The relative velocity of Power law fluid particles with both the lower and upper walls is taken zero. A mathematical model is structured in terms of nonlinear differential equations. A well-trusted numerical technique named finite element method is adopted commercially. The LBB-stable element pair is utilized to approximate the velocity and pressure. The nonlinear iterations are stopped when the residual is dropped by \(10^{ - 6}\). The impact of Power law index and Reynolds number on the primitive variables is inspected. The obtained observations in this direction are provided by means of both the contour plots and line graphs. Due to a circular obstacle, both the drag and lift coefficients are evaluated around the outer surface of an obstacle towards the higher values of the Power law index. The numerical values of drag and lift coefficients up to various refinement mesh levels of domain are provided by way of tables. It is noticed that the parabolic velocity profile at an inlet of channel is compatible as compared to the linear velocity profile. Further, both the drag and lift coefficients are increasing function of Power law index.

Keywords

Power law fluid model Linear and parabolic profiles Finite element method Drag and lift coefficients 

List of symbols

\((x,y,z)\)

Space variables

\(\vec{V} = (u,v,w)\)

Velocity field

\(\rho\)

Fluid density

p

Pressure

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {\tau }\)

Stress tensor

\(\vec{B}\)

Body force

\(\mu\)

Fluid viscosity

\(\eta\)

Apparent viscosity

\(n\)

Power law index

\(K\)

Consistency coefficient

\(U_{\text{mean}}\)

Mean velocity

\(D\)

Characteristic length (diameter of circular cylinder)

\(\text{Re}\)

Reynolds number

\(U_{\hbox{max} }\)

Maximum velocity

\(F_{\text{D}}\)

Drag force

\(F_{\text{L}}\)

Lift force

\(C_{\text{D}}\)

Drag coefficient

\(C_{\text{L}}\)

Lift coefficient

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia, for funding this work through research groups programme under grant number R.G.P-1/77/40.

References

  1. 1.
    Liepmann HW (1958) Hydromagnetic effects in Couette and Stokes flow. In: Landshoff RK (ed) Plasma in a magnetic field: a symposium on magnetohydrodynamics. Stanford University Press, StanfordGoogle Scholar
  2. 2.
    Wendl MC (1999) General solution for the Couette flow profile. Phys Rev E 60(5):6192CrossRefGoogle Scholar
  3. 3.
    Jalaal M, Nejad MG, Jalili P, Esmaeilpour M, Bararnia H, Ghasemi E, Soleimani S, Ganji DD, Moghimi SM (2011) Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow. Comput Math Appl 61(8):2267–2270CrossRefGoogle Scholar
  4. 4.
    Hatami M, Sheikholeslami M, Domairry G (2014) High accuracy analysis for motion of a spherical particle in plane Couette fluid flow by multi-step differential transformation method. Powder Technol 260:59–67CrossRefGoogle Scholar
  5. 5.
    Ellahi R, Shivanian E, Abbasbandy S, Hayat T (2016) Numerical study of magnetohydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition. Int J Numer Methods Heat Fluid Flow 26(5):1433–1445MathSciNetCrossRefGoogle Scholar
  6. 6.
    Danish Mohammad, Kumar Shashi, Kumar Surendra (2012) Exact analytical solutions for the Poiseuille and Couette-Poiseuille flow of third grade fluid between parallel plates. Commun Nonlinear Sci Numer Simul 17(3):1089–1097MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mucha PB, Piasecki T (2014) Compressible perturbation of Poiseuille type flow. J Math Pures et Appl 102(2):338–363MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhang Yongbin (2016) Poiseuille flow in a nano channel for different wall surface patterns. Int J Heat Mass Transfer 95:243–248CrossRefGoogle Scholar
  9. 9.
    Damianou Yiolanda, Georgiou Georgios C (2017) On Poiseuille flows of a Bingham plastic with pressure-dependent rheological parameters. J Non-Newtonian Fluid Mech 250:1–7MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kyritsi-Yiallourou Sophia, Georgiou Georgios C (2018) Newtonian Poiseuille flow in ducts of annular-sector cross-sections with Navier slip. Eur J Mech B/Fluids 72:87–102MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu R, Ding Z, Hu KX (2018) Stabilities in plane Poiseuille flow of Herschel–Bulkley fluid. J Non-Newtonian Fluid Mech 251:132–144MathSciNetCrossRefGoogle Scholar
  12. 12.
    Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28(1):477–539MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rajani BN, Kandasamy A, Majumdar S (2009) Numerical simulation of laminar flow past a circular cylinder. Appl Math Model 33(3):1228–1247MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kanaris Nicolas, Grigoriadis Dimokratis, Kassinos Stavros (2011) Three dimensional flow around a circular cylinder confined in a plane channel. Phys Fluids 23(6):064106CrossRefGoogle Scholar
  15. 15.
    Hussain Shafqat, Schieweck Friedhelm, Turek Stefan (2013) An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow. Int J Numer Methods Fluids 73(11):927–952MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tanner RI, Walters K (1998) Rheology: an historical perspective, vol 7. Elsevier, AmsterdamzbMATHGoogle Scholar
  17. 17.
    Chabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology. Eng Appl 14:1–462Google Scholar
  18. 18.
    Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. AIChE J 3(1):3–10CrossRefGoogle Scholar
  19. 19.
    Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Interface Sci 20:417–437CrossRefGoogle Scholar
  20. 20.
    Chhabra RP (2010) Non-Newtonian fluids: an introduction. In: Krishnan J, Deshpande A., Kumar P (eds) Rheology of complex fluids. Springer, New York, pp 3–34.  https://doi.org/10.1007/978-1-4419-6494-6_1 CrossRefzbMATHGoogle Scholar
  21. 21.
    Irgens Fridtjov (2014) Rheology and non-Newtonian fluids. Springer International Publishing, New YorkCrossRefGoogle Scholar
  22. 22.
    Dogonchi AS, Chamkha AJ, Seyyedi SM, Ganji DD (2018) Radiative nanofluid flow and heat transfer between parallel disks with penetrable and stretchable walls considering Cattaneo-Christov heat flux model. Heat Transfer Asian Res 47(5):735–753CrossRefGoogle Scholar
  23. 23.
    Chamkha A, Dogonchi AS, Ganji DD (2018) Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci 8(12):2396CrossRefGoogle Scholar
  24. 24.
    Dogonchi AS, Ganji DD (2018) Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts. Indian J Phys 92(6):757–766CrossRefGoogle Scholar
  25. 25.
    Alizadeh M, Dogonchi AS, Ganji DD (2018) Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Stud Thermal Eng 12:319–332CrossRefGoogle Scholar
  26. 26.
    Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD (2018) Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Thermal Anal Calorim.  https://doi.org/10.1007/s10973-018-7520-4
  27. 27.
    Dogonchi AS, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD (2018) Investigation of sedimentation process of soluble spherical particles in a non-Newtonian medium. J Colloid Interface Sci 530:532–537CrossRefGoogle Scholar
  28. 28.
    Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD (2019) CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transfer 132:473–483CrossRefGoogle Scholar
  29. 29.
    Dogonchi AS (2019) Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transfer 130:320–332CrossRefGoogle Scholar
  30. 30.
    Seyyedi SM, Sahebi N, Dogonchi AS, Hashemi-Tilehnoee M (2019) Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position. Int J Heat Mass Transfer 130:1343–1357CrossRefGoogle Scholar
  31. 31.
    Andersson HI, Bech KH, Dandapat BS (1992) Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non-Linear Mech 27(6):929–936CrossRefGoogle Scholar
  32. 32.
    Hassanien IA, Abdullah AA, Gorla RSR (1998) Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet. Math Comput Model 28(9):105–116MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chen Chien-Hsin (2003) Heat transfer in a power-law fluid film over a unsteady stretching sheet. Heat Mass Transfer 39(8–9):791–796CrossRefGoogle Scholar
  34. 34.
    Cortell Rafael (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168(1):557–566MathSciNetzbMATHGoogle Scholar
  35. 35.
    Chen C-H (2008) Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-law stretched sheet with surface heat flux. Int J Thermal Sci 47(7):954–961CrossRefGoogle Scholar
  36. 36.
    Abel MS, Datti PS, Mahesha N (2009) Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source. Int J Heat Mass Transfer 52(11–12):2902–2913CrossRefGoogle Scholar
  37. 37.
    Nadeem S, Akbar NS, Hendi AA, Hayat T (2011) Power law fluid model for blood flow through a tapered artery with a stenosis. Appl Math Comput 217(17):7108–7116MathSciNetzbMATHGoogle Scholar
  38. 38.
    Postelnicu A, Pop I (2011) Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl Math Comput 217(9):4359–4368MathSciNetzbMATHGoogle Scholar
  39. 39.
    Desai CS, Abel JF (1971) Introduction to the finite element method; a numerical method for engineering analysis. Van Nostrand Reinhold, New YorkzbMATHGoogle Scholar
  40. 40.
    Bang H, Kwon YW (2000) The finite element method using MATLAB. CRC Press, Boca RatonzbMATHGoogle Scholar
  41. 41.
    Felippa CA (2001) Introduction to finite element methods. University of Colorado, USAGoogle Scholar
  42. 42.
    Matuszyk Paweł J, Sieniek Marcin, Paszyński Maciej (2015) Fully automatic 2D hp-adaptive finite element method for non-stationary heat transfer. Proc Comput Sci 51:2883–2887CrossRefGoogle Scholar
  43. 43.
    Zhao B (2016) Study on heat transfer of ground heat exchanger based on wedgelet finite element method. Int Commun Heat Mass Transfer 74:63–68CrossRefGoogle Scholar
  44. 44.
    Lin G, Li P, Liu J, Zhang P (2017) Transient heat conduction analysis using the NURBS-enhanced scaled boundary finite element method and modified precise integration method. Acta Mech Solida Sinica 30(5):445–464CrossRefGoogle Scholar
  45. 45.
    Badri MA, Jolivet P, Rousseau B, Favennec Y (2018) High performance computation of radiative transfer equation using the finite element method. J Comput Phys 360:74–92MathSciNetCrossRefGoogle Scholar
  46. 46.
    Brezzi F, Fortin M (2012) Mixed and hybrid finite element methods, vol 15. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  47. 47.
    Schäfer M, Turek S, Durst F, Krause E, Rannacher R (1996) Benchmark computations of laminar flow around a cylinder. In: Flow simulation with high-performance computers II, pp 547–566. Vieweg + Teubner VerlagGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Khalil Ur Rehman
    • 2
    • 3
    Email author
  • M. Y. Malik
    • 1
  • R. Mahmood
    • 2
  • N. Kousar
    • 2
  • Iffat Zehra
    • 2
  1. 1.Department of Mathematics, College of SciencesKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of MathematicsAir UniversityIslamabadPakistan
  3. 3.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations