Advertisement

Optimization of drilling parameters in hybrid (Al6061/SiC/B4C/talc) composites by grey relational analysis

  • C. Ramesh KumarEmail author
  • V. JaiGanesh
  • R. Ravi Raja Malarvannan
Technical Paper
  • 46 Downloads

Abstract

In this present study, optimization of drilling parameters in hybrid Al-6061/SiC/B4C/talc composites was studied using grey relational analysis. The purpose of this research was the investigation of the effect of drilling parameters on Al6061/SiC/B4C/talc composites fabricated using the stir casting. These hybrid composites containing talc (solid lubricant) particles reduce thrust force, circularity and surface roughness. In drilling, experiments were done based on the Taguchi L27 orthogonal array method on hybrid Al6061/SiC/B4C/talc composites with HSS drill bits of diameter 6 mm, 7 mm and 8 mm used in dry condition. ANOVA examined the effect of various drilling input parameters like cutting speed, feed, depth of cut and percentage of reinforcement on output parameters like thrust force, surface roughness and circularity. Grey relational analysis equations were utilized for finding the optimum machining condition. The most important parameter, namely the cutting speed, was found to have influenced the thrust force, circularity and surface roughness on the drilling of hybrid Al6061/SiC/B4C/talc composites.

Keywords

Composites Drilling Thrust force Surface roughness Circularity 

List of symbols

\(X_{ijk}^{*}\)

Normalized S/N ratio

iith

Performance characteristic

jjth

Experiment

\(\Delta_{ij}\)

Replications-evaluated formula

\(\zeta_{ij}\)

Grey relational coefficient

\(y_{j}\)

Grey relational grade

S/N

S/N ratio

\({\text{ss}}_{\text{T}}\)

Sum of the squared deviations

\(\gamma_{j}\)

Grey relational grade for the jth experiment

\(\gamma_{\text{m}}\)

Total of the mean grey relational grade at the optimum level

\(\eta_{\text{mean}}\)

Mean of the total mean S/N ratio

\(\eta_{i}\)

Mean S/N ratio at the optimum level

\(\eta_{\text{predicted}}\)

Predicted grey relational grade predicted for the optimal combination of parameters

Notes

References

  1. 1.
    Saravanakumar A, Sasikumar P, Sivasankaran S (2014) Effect of graphite particles in the drilling of hybrid aluminum matrix composite. Procedia Eng 97:495–504.  https://doi.org/10.1016/j.proeng.2014.12.274 Google Scholar
  2. 2.
    Basavarajappa S, Chandramohan G, Prabhu M, Mukund K, Ashwin M (2007) Drilling of hybrid metal matrix composites—workpiece surface integrity. Int J Mach Tools Manuf 47:92–96.  https://doi.org/10.1016/j.ijmachtools.2006.02.008 Google Scholar
  3. 3.
    Abhishek K, Sonkar V, Datta S, Mahapatra SS (2014) Optimization in drilling of MMC composites. J Basic Appl Eng Res 1(2):79–83.  https://doi.org/10.1088/1757-899x/149/1/012103 Google Scholar
  4. 4.
    Muniaraj A, Das SL, Palanikumar K (2013) Evaluation of thrust force and surface roughness in drilling of Al/SiC/Gr hybrid metal matrix composite. Int J Latest Res Sci Technol 2(4):4–8Google Scholar
  5. 5.
    Udayprakash J, Moorthy TV, Milton PJ (2013) International conference on design and manufacturing. Procedia Eng 64:1344–1353.  https://doi.org/10.1016/j.proeng.2013.09.216 Google Scholar
  6. 6.
    Charles S, Arunachalam VP (2004) Analysis and mathematical modeling of machining properties of aluminum alloy hybrid (Al alloy/Sic/fly ash) composites produced by liquid metallurgy and powder metallurgy techniques. Indian J Eng Mater Sci 11:473–480Google Scholar
  7. 7.
    Jenarthan MP, Naresh N (2013) Optimization of process parameters on machining force and MRR in milling by grey relational analysis. i-manager’s J Mater Sci 1:29–36Google Scholar
  8. 8.
    Rajmohan T, Palanikumar K (2010) A mathematical model to predict thrust force in drilling hybrid metal matrix composites. In: Frontiers in automobile and mechanical engineering.  https://doi.org/10.1109/FAME.2010.5714788
  9. 9.
    Ahamed AR, Asokan P, Aravindan S, Prakash MK (2010) Drilling of hybrid Al–5%SiCp–5%B4Cp metal matrix composites. Int J Adv Manuf Technol 49:871–877.  https://doi.org/10.1007/s00170-009-2453-5 Google Scholar
  10. 10.
    Babu TM, Sugin MA, Muthukrishnan N (2012) Investigation on the characteristics of surface quality on machining hybrid metal matrix composite (Al–SiC–B4C). Proc Eng 38:2617–2624.  https://doi.org/10.1016/j.proeng.2012.06.308 Google Scholar
  11. 11.
    Senthilbabu S, Vinayagam K (2012) Parameters involved in the drilling of Al-based metal matrix composites. Int J Eng Innov Technol (IJEIT) 1(4):91–94Google Scholar
  12. 12.
    Tosun N (2008) Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. Int J Adv Manuf Technol 28:450–455.  https://doi.org/10.1007/s00170-004-2386-y Google Scholar
  13. 13.
    Hayajneh MT, Hassan AM, Mayyas AT (2009) Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J Alloys Compd 478:559–565.  https://doi.org/10.1016/j.jallcom.2008.11.155 Google Scholar
  14. 14.
    Basavarajappa S, Chandramohan G, Mahadevan A, Thangavelu M, Subramanian R, Gopalakrishnan P (2007) Influence of sliding speed on the dry sliding wear behavior and the sub surface deformation on hybrid metal matrix composite. Wear 262:1007–1012.  https://doi.org/10.1016/j.wear.2006.10.016 Google Scholar
  15. 15.
    Gultekin D, Uysal M, Aslan S, Alaf M, Guler MO, Akbulut H (2010) The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system. Wear 270:73–82.  https://doi.org/10.1016/j.wear.2010.09.001 Google Scholar
  16. 16.
    Basavarajappa S, Chandramohan G, Davim J (2008) Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J Mater Process Technol 196(1–3):332–338.  https://doi.org/10.1016/j.jmatprotec.2007.05.043 Google Scholar
  17. 17.
    Asiltürk I (2014) Application of artificial intelligence to predict surface roughness. Exp Tech 38:54–60.  https://doi.org/10.1111/j.1747-1567.2012.00827 Google Scholar
  18. 18.
    Raj AM, Das SL, Palanikumar K (2013) Influence of drill geometry on surface roughness in the drilling of Al/SiC/Gr hybrid metal matrix composite. Indian J Sci Technol 6(7):5002–5007.  https://doi.org/10.17485/ijst/2013/v6i7/34356 Google Scholar
  19. 19.
    Senthilkumar N, Ganapathy T, Tamizharasan T (2014) Optimisation of machining and geometrical parameters in turning process using Taguchi method. Aust J Mech Eng 12(2):233–246.  https://doi.org/10.7158/M12-113.2014.12.2 Google Scholar
  20. 20.
    Priyadarshi D, Sharma RK (2016) Optimization for turning of Al6061–SiC–Gr hybrid nano composites using response surface methodologies. Mater Manuf Process 31:1342–1350.  https://doi.org/10.1080/10426914.2015.1070427 Google Scholar
  21. 21.
    Hassanpour H, Sadeghi MH, Rezaei H, Rasti A (2016) Experimental Study of cutting force, microhardness, surface roughness, burr size on micro-milling of TiAl4V in minimum quantity lubrication. Mater Manuf Process 31:1654–1662.  https://doi.org/10.1080/10426914.2015.1117629 Google Scholar
  22. 22.
    Elangovan R, Ravikumar M (2015) Performance of Al-fly ash metal matrix composites. ARPN J Eng Appl Sci 10(4):2080–2089Google Scholar
  23. 23.
    Elangovan R, Ravikumar MM (2014) Evaluation of factors affecting PCD tool wear behavior of Al-fly ash metal matrix composites by using design of experiments. Int J Mech Mechatron Eng 14(03):76–86Google Scholar
  24. 24.
    Sahoo MK (2013) Parametric analysis and optimization of turning operation by using Taguchi approach. Int J Mod Eng Res (IJMER) 3:2154Google Scholar
  25. 25.
    Chandna et al (2015) Int J Mech Aerosp Ind Mechatron Manuf Eng 9(3). https://waset.org/journal/Mechanical
  26. 26.
    Shoba C, Ramanaiah N, Nageswara Rao D (2015) Effect of reinforcement on the cutting forces while machining metal matrix composites—an experimental approach. Eng Sci Technol Int J 18:658–663Google Scholar
  27. 27.
    Phanibhushana MV, Chandrappa CN, Niranjan HB (2015) Evaluation of mechanical properties of Al6061 reinforced with hematite. J Multidiscip Eng Sci Technol (JMEST) 2(1):255–260.  https://doi.org/10.1016/j.jestch.2015.03.013 Google Scholar
  28. 28.
    Uthayakumar M (2013) Dry sliding friction and wear studies of fly ash reinforced AA-6351 metal matrix composites. Adv Tribol.  https://doi.org/10.1155/2013/365602 Google Scholar
  29. 29.
    Pannerselvan R (2012) Design and analysis of experiments. PHI Learning Private Limited, NewDelhiGoogle Scholar
  30. 30.
    Kilickap E, Yardimeden A, Çelik YH (2017) Mathematical modeling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti-6242S. Appl Sci 7:1064.  https://doi.org/10.3390/app7101064 Google Scholar
  31. 31.
    Roy S, Sahoo P (2012) Multiple roughness characteristics of chemically deposited Ni-P-W coatings. Tribol Ind 34(4):186–197Google Scholar
  32. 32.
    Basavarajappa S, Chandramohan G, Prabhu M, Mukund K, Ashwin M (2007) Drilling of hybrid metal matrix composites work-piece surface integrity. Int J Mach Tools Manuf 47:92–96.  https://doi.org/10.1016/j.ijmachtools.2006.02.008 Google Scholar
  33. 33.
    Altunpak Y, Ay M, Aslan S (2012) Drilling of a hybrid Al/SiC/Gr metal matrix composites. Int J Adv Manuf Technol 60(5):513–517.  https://doi.org/10.1007/S00170-011-3644-4 Google Scholar
  34. 34.
    Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17(3):445–453.  https://doi.org/10.1023/B:TRIL.0000044492.91991.f3 Google Scholar
  35. 35.
    Hayajneh MT, Hassan AM, Mayyas AT (2009) Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J Alloys Compd 478:559–565.  https://doi.org/10.1016/j.jallcom.2008.11.155 Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • C. Ramesh Kumar
    • 1
    Email author
  • V. JaiGanesh
    • 2
  • R. Ravi Raja Malarvannan
    • 3
  1. 1.Department Mechanical EngineeringSriram Engineering CollegeChennaiIndia
  2. 2.Department of Mechanical EngineeringSA Engineering CollegeChennaiIndia
  3. 3.Department of Mechanical EngineeringSaveetha Engineering CollegeChennaiIndia

Personalised recommendations