Biomechanical performance using finite element analysis of different screw materials in the parallel screw fixation of Salter–Harris Type 4 fractures

  • Kadir GokEmail author
  • Sermet Inal
  • Levent Urtekin
  • Arif Gok
Technical Paper


The biomechanical performance of stainless steel, titanium alloy, cobalt–chromium and NiTi alloy has been compared to fix with parallel fixation in Salter–Harris Type 4 fractures. The best material has been determined under the axial load. 3D model of the parallel fixation has been performed via SolidWorks. Ansys Workbench software was used for numerical analyses. All boundary conditions have defined in finite element analysis (FEA) software. The boundary conditions such as the loading, contact, friction and material model have been determined for FEA. The stress values occurring in the epiphyseal plate of the femur, upper screw and lower screw have been calculated based on von-Mises criteria. At the end of numerical analyses, we have the opinion that, in practice, use of Ti screws in Salter–Harris Type 4 distal femoral fractures will be advantageous.


Salter–Harris Type 4 fracture Biomechanics Different screw materials FEA 3D femoral model 



  1. 1.
    Gok K, Inal S, Gok A, Gulbandilar E (2017) Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures. J Mater Sci Mater Med 28(5):81. CrossRefGoogle Scholar
  2. 2.
    Mann DC, Rajmaira S (1990) Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0–16 years. J Pediatr Orthoped 10(6):713–716CrossRefGoogle Scholar
  3. 3.
    Peterson HA, Madhok RBJ, Ilstrup DM, Melton LJ (1994) Physeal fractures: Part 1. Epidemiology in Olmsted County, Minnesota, 1979–1988. J Pediatr Orthoped 14(4):423–430CrossRefGoogle Scholar
  4. 4.
    Basener CJ, Mehlman CT, DiPasquale TG (2009) Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis. J Orthop Trauma 23(9):663–667CrossRefGoogle Scholar
  5. 5.
    Eid AM, Hafez MA (2002) Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases. Injury 33(3):251–255. CrossRefGoogle Scholar
  6. 6.
    Dahl WJ, Silva S, Vanderhave KL (2014) Distal femoral physeal fixation: are smooth pins really safe? J Pediatr Orthoped 34(2):134–138. CrossRefGoogle Scholar
  7. 7.
    Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR (2013) An anatomic study of the distal femoral epiphysis. J Pediatr Orthoped 33(7):743–749. CrossRefGoogle Scholar
  8. 8.
    Lombardo SJ, Harvey JP Jr (1977) Fractures of the distal femoral epiphyses Factors influencing prognosis: a review of thirty-four cases. J Bone Joint Surg Br 59(6):742–751CrossRefGoogle Scholar
  9. 9.
    Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD (2000) Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15(5):675–690Google Scholar
  10. 10.
    Verdonschot N, Huiskes R (1997) The effects of cement-stem debonding in THA on the long-term failure probability of cement. J Biomech 30(8):795–802. CrossRefGoogle Scholar
  11. 11.
    Andress H, Kahl S, Kranz C, Gierer P, Schürmann M, Lob G (2000) Clinical and finite element analysis of a modular femoral prosthesis consisting of a head and stem component in the treatment of pertrochanteric fractures. J Orthop Trauma 14(8):546–553CrossRefGoogle Scholar
  12. 12.
    Waide V, Cristofolini L, Stolk J, Verdonschot N, Boogaard GJ, Toni A (2004) Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods. J Biomech 37(1):13–26. CrossRefGoogle Scholar
  13. 13.
    Senalp AZ, Kayabasi O, Kurtaran H (2007) Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater Des 28(5):1577–1583. CrossRefGoogle Scholar
  14. 14.
    Colombi P (2002) Fatigue analysis of cemented hip prosthesis: model definition and damage evolution algorithms. Int J Fatigue 24(8):895–901. CrossRefzbMATHGoogle Scholar
  15. 15.
    Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F (2006) Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 37(10):649–658. CrossRefGoogle Scholar
  16. 16.
    Gok K (2015) Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations. Measurement 75:57–68. CrossRefGoogle Scholar
  17. 17.
    Gok K, Gok A, Kisioglu Y (2014) Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method. Int J Adv Manuf Technol 76:1–12. CrossRefGoogle Scholar
  18. 18.
    Goffin JM, Pankaj P, Simpson AH (2013) The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. J Orthopaed Res 31(4):596–600. CrossRefGoogle Scholar
  19. 19.
    Atmaca H, Kesemenli C, Memişoğlu K, Özkan A, Celik Y (2013) Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study. Knee Surg Sports Traumatol Arthrosc 21(12):2667–2673. CrossRefGoogle Scholar
  20. 20.
    Trad Z, Barkaoui A, Chafra M, Tavares JMR (2018) Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc Inst Mech Eng [H] 232(6):553–564. CrossRefGoogle Scholar
  21. 21.
    Wang Y, Fan Y, Zhang M (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys 36(4):439–447. CrossRefGoogle Scholar
  22. 22.
    Inal S, Gok K, Gok A, Uzumcugil AO, Kuyubasi SN (2018) Should we really compress the fracture line in the treatment of Salter-Harris type 4 distal femoral fractures? A biomechanical study. J Br Soc Mech Sci Eng 40(11):528. CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Yuan-Kun T, Yau-Chia L, Wen-Jen Y, Li-Wen C, You-Yao H, Yung-Chuan C, Li-Chiang L (2009) Temperature rise simulation during a Kirschner pin drilling in bone. In: 3rd international conference on bioinformatics and biomedical engineering, 2009. ICBBE 2009. Beijing 11–13 June 2009. pp 1–4.
  25. 25.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734. CrossRefGoogle Scholar
  26. 26.
  27. 27. DT, metals and implantable materials (2018)
  28. 28.
    Niinomi M, Liu Y, Nakai M, Liu H, Li H (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater 3(3):173–185. CrossRefGoogle Scholar
  29. 29.
    Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445–454. CrossRefGoogle Scholar
  30. 30.
    Pilliar RM (1991) Modern metal processing for improved load-bearing surgical implants. Biomaterials 12(2):95–100. CrossRefGoogle Scholar
  31. 31.
    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng, A 243(1):244–249. CrossRefGoogle Scholar
  32. 32.
    Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S (2002) Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 43(12):2970–2977. CrossRefGoogle Scholar
  33. 33.
    Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials 24(16):2673–2683. CrossRefGoogle Scholar
  34. 34.
    Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, Niinomi M (2008) Experiment study on fracture fixation with low rigidity titanium alloy. J Mater Sci Mater Med 19(4):1581–1586. CrossRefGoogle Scholar
  35. 35.
    Silva G, Baldissera MR, Trichês EdS, Cardoso KR (2013) Preparation and characterization of stainless steel 316L/HA biocomposite. Mater Res 16:304–309CrossRefGoogle Scholar
  36. 36.
    Urtekin L (2015) Experimental investigation of process parameters for WEDM of Ti-6Al-4V/TiN composites. Sci Eng Compos Mater 22.
  37. 37.
  38. 38.
    Man HC, Zhao NQ (2006) Phase transformation characteristics of laser gas nitrided NiTi shape memory alloy. Surf Coat Technol 200(18):5598–5605. CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Kadir Gok
    • 1
    Email author
  • Sermet Inal
    • 2
  • Levent Urtekin
    • 3
  • Arif Gok
    • 4
  1. 1.Department of Mechanical Engineering, Hasan Ferdi Turgutlu Technology FacultyManisa Celal Bayar UniversityManisaTurkey
  2. 2.Department of Orthopaedic Surgery, School of MedicineKutahya Health Sciences UniversityKutahyaTurkey
  3. 3.Department of Mechanical EngineeringAhi Evran UniversityKırşehirTurkey
  4. 4.Department of Mechanical Engineering, Technology FacultyAmasya UniversityAmasyaTurkey

Personalised recommendations