Advertisement

Laser shock peening wavelength conditions for enhancing corrosion behaviour of titanium alloy in chloride environment

  • G. Ranjith Kumar
  • G. RajyalakshmiEmail author
  • S. Swaroop
  • S. Arul Xavier Stango
  • U. Vijayalakshmi
Technical Paper
  • 44 Downloads

Abstract

The present study has been carried out to analyse the effect of the laser shock peening (LSP) with the absence of a coating on titanium alloy (Grade 5—Ti6Al4V) and to establish the best set of LSP parameters for enhanced surface characteristics. Ti6Al4V which has excellent mechanical properties is penned using Nd:YAG pulsed laser with 2D XY translation with water as confinement medium. Power density (3, 6, 9 GW/cm2), wavelength (532, 1064 nm) and overlap (60%, 70%) are the three process parameters considered to perform laser shock peening without coating (LSPwC). Surface roughness is increased with raise in wavelength and as well as other parameters too. Even though hardness is increased in both wavelengths, enhanced hardness is caused with 1064 nm wavelength. An adequate amount of compressive stress is induced with 3 GW/cm2 at 50 μm depth. The rate of corrosion is dropped in samples LSPwC with 532 nm compared with 1064 nm wavelength due to its low surface roughness and surface oxide layer which holds the fluctuation of current density with respect to potential. SEM observation showed pits on the surface of samples peened with a 1064 nm wavelength. And this surface pitting is correlated with the fall of charge transfer resistance in such samples.

Keywords

Laser peening Wavelength Electrochemical studies Surface topology Titanium 

Notes

References

  1. 1.
    Nalla RK, Altenberger I, Noster U et al (2003) On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater Sci Eng A 355:216–230.  https://doi.org/10.1016/S0921-5093(03)00069-8 CrossRefGoogle Scholar
  2. 2.
    Altenberger I, Nalla RK, Sano Y et al (2012) On the effect of deep-rolling and laser peening on the stress-controlled low and high cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550°C. Int J Fatigue 44:292–302.  https://doi.org/10.1016/j.ijfatigue.2012.03.008 CrossRefGoogle Scholar
  3. 3.
    Maximov JT, Duncheva GV, Anchev AP et al (2018) Effect of slide burnishing method on the surface integrity of AISI 316Ti chromium–nickel steel. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-018-1135-3 CrossRefGoogle Scholar
  4. 4.
    Xie L, Wen Y, Zhan K et al (2016) Characterization on surface mechanical properties of Ti–6Al–4V after shot peening. J Alloys Compd 666:65–70.  https://doi.org/10.1016/j.jallcom.2016.01.119 CrossRefGoogle Scholar
  5. 5.
    Sun Q, Han Q, Liu X et al (2017) The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy. Surf Coat Technol 328:469–479.  https://doi.org/10.1016/j.surfcoat.2017.08.028 CrossRefGoogle Scholar
  6. 6.
    Liu J, Suslov S, Li S et al (2017) Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V. Surf Coat Technol 325:289–298.  https://doi.org/10.1016/j.surfcoat.2017.04.051 CrossRefGoogle Scholar
  7. 7.
    Guo W, Sun R, Song B et al (2018) Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf Coat Technol 349:503–510.  https://doi.org/10.1016/j.surfcoat.2018.06.020 CrossRefGoogle Scholar
  8. 8.
    Singh A, Harimkar SP (2012) Laser surface engineering of magnesium alloys: a review. JOM 64:716–733.  https://doi.org/10.1007/s11837-012-0340-2 CrossRefGoogle Scholar
  9. 9.
    Maleki MH, Abbasi S, Vaezzade M, Asgari A (2014) Improving anti-reflectivity and laser damage threshold of SiO2/ZrO2 thin films by laser shock peening at 1064 nm. Opt Quantum Electron 46:1149–1155.  https://doi.org/10.1007/s11082-013-9846-2 CrossRefGoogle Scholar
  10. 10.
    Zabeen S, Langer K, Fitzpatrick ME (2018) Effect of alloy temper on surface modification of aluminium 2624 by laser shock peening. Surf Coat Technol 347:123–135.  https://doi.org/10.1016/j.surfcoat.2018.04.069 CrossRefGoogle Scholar
  11. 11.
    Siddaiah A, Mao B, Liao Y, Menezes PL (2018) Surface characterization and tribological performance of laser shock peened steel surfaces. Surf Coat Technol 351:188–197.  https://doi.org/10.1016/j.surfcoat.2018.07.087 CrossRefGoogle Scholar
  12. 12.
    Porro JA, Ocaña JL, Grum J (2012) Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy. Surf Coat Technol 208:109–116CrossRefGoogle Scholar
  13. 13.
    Cao Z, Xu H, Zou S, Che Z (2012) Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening. Chin J Aeronaut 25:650–656.  https://doi.org/10.1016/S1000-9361(11)60429-9 CrossRefGoogle Scholar
  14. 14.
    Petan L, Ocaña JL, Grum J (2016) Effects of laser shock peening on the surface integrity of 18% Ni maraging steel. Stroj Vestnik/J Mech Eng 62:262–270.  https://doi.org/10.5545/sv-jme.2015.3305 CrossRefGoogle Scholar
  15. 15.
    Trdan U, Grum J (2015) Investigation of corrosion behaviour of aluminium alloy subjected to laser shock peening without a protective coating. Adv Mater Sci Eng 2015:1–9.  https://doi.org/10.1155/2015/705306 CrossRefGoogle Scholar
  16. 16.
    Dai F, Zhou J, Lu J, Luo X (2016) A technique to decrease surface roughness in overlapping laser shock peening. Appl Surf Sci 370:501–507.  https://doi.org/10.1016/j.apsusc.2016.02.138 CrossRefGoogle Scholar
  17. 17.
    Sealy MP, Guo YB (2010) Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium–calcium (Mg–Ca) alloy. J Mech Behav Biomed Mater 3:488–496.  https://doi.org/10.1016/j.jmbbm.2010.05.003 CrossRefGoogle Scholar
  18. 18.
    Kumar D, Nadeem Akhtar S, Kumar Patel A et al (2015) Tribological performance of laser peened Ti–6Al–4V. Wear 322–323:203–217.  https://doi.org/10.1016/j.wear.2014.11.016 CrossRefGoogle Scholar
  19. 19.
    Gujba A, Hackel L, Medraj M (2016) Water droplet erosion performance of laser shock peened Ti–6Al–4V. Metals (Basel) 6:262.  https://doi.org/10.3390/met6110262 CrossRefGoogle Scholar
  20. 20.
    Gomez-Rosas G, Rubio-Gonzalez C, Ocaña JL et al (2010) Laser shock processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths. Appl Surf Sci 256:5828–5831.  https://doi.org/10.1016/j.apsusc.2010.03.043 CrossRefGoogle Scholar
  21. 21.
    Umapathi A, Swaroop S (2016) Residual stress distribution in a laser peened Ti–2.5Cu alloy. Surf Coat Technol 307:38–46.  https://doi.org/10.1016/j.surfcoat.2016.08.053 CrossRefGoogle Scholar
  22. 22.
    Kalainathan S, Prabhakaran S (2016) Recent development and future perspectives of low energy laser shock peening. Opt Laser Technol 81:137–144.  https://doi.org/10.1016/j.optlastec.2016.02.007 CrossRefGoogle Scholar
  23. 23.
    Rozmus-Górnikowska M (2010) Surface modifications of a Ti6Al4V alloy by a laser shock processing. Acta Phys Pol A 117:808–811.  https://doi.org/10.12693/APhysPolA.117.808 CrossRefGoogle Scholar
  24. 24.
    Juanito Gabriela, Morsch Carolina, Benfatti César, Fredel Márcio, Ricardo Magini JS (2015) Effect of fluoride and bleaching agents on the degradation of titanium: literature review. Dentistry 5:1–6.  https://doi.org/10.4172/2161-1122.100027 CrossRefGoogle Scholar
  25. 25.
    Tian YS, Chen CZ, Wang DY, Lei TQ (2005) Laser surface modification of titanium alloys—a review. Surf Rev Lett 12:123–130CrossRefGoogle Scholar
  26. 26.
    Sathyajith S, Kalainathan S, Swaroop S (2013) Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd:YAG laser. Opt Laser Technol 45:389–394.  https://doi.org/10.1016/j.optlastec.2012.06.019 CrossRefGoogle Scholar
  27. 27.
    Ge M, Xiang J, Yang L, Wang JT (2017) Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid. Surf Coat Technol 310:157–165.  https://doi.org/10.1016/j.surfcoat.2016.12.093 CrossRefGoogle Scholar
  28. 28.
    Dai FZ, Geng J, Tan WS et al (2018) Friction and wear on laser textured Ti6Al4V surface subjected to laser shock peening with contacting foil. Opt Laser Technol 103:142–150.  https://doi.org/10.1016/j.optlastec.2017.12.044 CrossRefGoogle Scholar
  29. 29.
    Smith PR, Shepard MJ, Prevéy PS III, Clauer AH (1999) Effect of power density and pulse repetition on laser shock peening of Ti–6AI–4V. J Mater Eng Perform 9:33–37CrossRefGoogle Scholar
  30. 30.
    Sundar R, Kumar H, Kaul R et al (2012) Studies on laser peening using different sacrificial coatings. Surf Eng 28:564–568.  https://doi.org/10.1179/1743294412Y.0000000029 CrossRefGoogle Scholar
  31. 31.
    Jain Y, Varin S, Prabhakaran S, Kalainathan S (2017) Influence of multiple laser shock peening without coating on Ti–6Al–4V alloy for aircraft applications. Mech Mater Sci Eng.  https://doi.org/10.2412/mmse.65.57.424 CrossRefGoogle Scholar
  32. 32.
    Xie L, Wen Y, Wang L et al (2016) Characterization on surface properties of Ti–6Al–4V after multiple shot peening treatments. J Eng Mater Technol 138:041005.  https://doi.org/10.1115/1.4033577 CrossRefGoogle Scholar
  33. 33.
    Cao ZW, Gong SL, Gao Y (2013) Characterization of TC17 titanium alloy treated by square-spot laser shock peening. Adv Mater Res 652–654:2378–2383.  https://doi.org/10.4028/www.scientific.net/AMR.652-654.2378 CrossRefGoogle Scholar
  34. 34.
    Amanov A, Pyun YS (2017) Local heat treatment with and without ultrasonic nanocrystal surface modification of Ti–6Al–4V alloy: mechanical and tribological properties. Surf Coat Technol 326:343–354.  https://doi.org/10.1016/j.surfcoat.2017.07.064 CrossRefGoogle Scholar
  35. 35.
    Umapathi A, Swaroop S (2017) Wavelength dependent deformation in a laser peened Ti–2.5Cu alloy. Mater Sci Eng A 684:344–352.  https://doi.org/10.1016/j.msea.2016.12.073 CrossRefGoogle Scholar
  36. 36.
    Berthe L, Fabbro R, Peyre P et al (1997) Shock waves from a water-confined laser-generated plasma. J Appl Phys 82:2826–2832.  https://doi.org/10.1063/1.366113 CrossRefGoogle Scholar
  37. 37.
    Rubio-González C, Gomez-Rosas G, Ocaña JL et al (2006) Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Appl Surf Sci 252:6201–6205.  https://doi.org/10.1016/j.apsusc.2005.08.062 CrossRefGoogle Scholar
  38. 38.
    Chen H, Kysar JW, Yao YL (2004) characterization of plastic deformation induced by microscale laser shock peening. J Appl Mech 71:713.  https://doi.org/10.1115/1.1782914 CrossRefzbMATHGoogle Scholar
  39. 39.
    Hughes H (1967) X-ray techniques for residual stress measurement. Strain 3:26–31.  https://doi.org/10.1111/j.1475-1305.1967.tb00885.x CrossRefGoogle Scholar
  40. 40.
    Munuera C, Matzelle TR, Kruse N et al (2007) Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study. Acta Biomater 3:113–119.  https://doi.org/10.1016/j.actbio.2006.08.009 CrossRefGoogle Scholar
  41. 41.
    Montross CS, Wei T, Ye L et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036.  https://doi.org/10.1016/S0142-1123(02)00022-1 CrossRefGoogle Scholar
  42. 42.
    Huang S, Zhu Y, Guo W et al (2017) Impact toughness and microstructural response of Ti-17 titanium alloy subjected to laser shock peening. Surf Coat Technol 327:32–41.  https://doi.org/10.1016/j.surfcoat.2017.07.045 CrossRefGoogle Scholar
  43. 43.
    Wu J, Zou S, Zhang Y et al (2017) Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening. Surf Coat Technol 328:283–291.  https://doi.org/10.1016/j.surfcoat.2017.08.069 CrossRefGoogle Scholar
  44. 44.
    Tong Z, Ren X, Ren Y et al (2018) Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surf Coat Technol 335:32–40.  https://doi.org/10.1016/j.surfcoat.2017.12.003 CrossRefGoogle Scholar
  45. 45.
    Revathi A, Magesh S, Balla VK et al (2016) Current advances in enhancement of wear and corrosion resistance of titanium alloys—a review. Mater Technol 31:696–704.  https://doi.org/10.1080/10667857.2016.1212780 CrossRefGoogle Scholar
  46. 46.
    Lu JZ, Han B, Cui CY et al (2017) Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers. Opt Laser Technol 88:250–262.  https://doi.org/10.1016/j.optlastec.2016.09.025 CrossRefGoogle Scholar
  47. 47.
    Ning C, Zhang G, Yang Y, Zhang W (2018) Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy. Appl Opt 57:2467–2473.  https://doi.org/10.1364/AO.57.002467 CrossRefGoogle Scholar
  48. 48.
    Shahba RMA, Ghannem WA, El-shenawy AE (2011) Corrosion and inhibition of Ti–6Al–4V Alloy in NaCl solution. Int J Electrochem Sci 6:5499–5509Google Scholar
  49. 49.
    Mendoza-Canales J, Marín-Cruz J (2008) Corrosion behavior of titanium and nickel-based alloys in HCl and HCl + H2S environments. Int J Electrochem Sci 3:346–355Google Scholar
  50. 50.
    Hoseinpour Gollo M, Ameli Kalkhoran SN (2017) Experimental study on mechanical and chemical behaviors of bi-layer Fe/Al sheet after laser forming. J Braz Soc Mech Sci Eng 39:1623–1632.  https://doi.org/10.1007/s40430-016-0536-4 CrossRefGoogle Scholar
  51. 51.
    Khan MA, Sultan Q, Tariq F (2017) Effect of pitting corrosion on similar and dissimilar alloy welded joints. J Braz Soc Mech Sci Eng 39:4037–4044.  https://doi.org/10.1007/s40430-017-0834-5 CrossRefGoogle Scholar
  52. 52.
    Karthik D, Swaroop S (2017) Laser shock peening enhanced corrosion properties in a nickel based Inconel 600 superalloy. J Alloys Compd 694:1309–1319.  https://doi.org/10.1016/j.jallcom.2016.10.093 CrossRefGoogle Scholar
  53. 53.
    Hu P, Song R, Li X et al (2017) Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium–zirconium–molybdenum alloy. J Alloys Compd 708:367–372.  https://doi.org/10.1016/j.jallcom.2017.03.025 CrossRefGoogle Scholar
  54. 54.
    Lu JZ, Wu LJ, Sun GF et al (2017) Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater 127:252–266.  https://doi.org/10.1016/j.actamat.2017.01.050 CrossRefGoogle Scholar
  55. 55.
    Karthik D, Arul Xavier Stango S, Vijayalakshmi U, Swaroop S (2016) Electrochemical behavior of laser shock peened Inconel 625 superalloy. Surf Coat Technol 311:46–54.  https://doi.org/10.1016/j.surfcoat.2016.12.105 CrossRefGoogle Scholar
  56. 56.
    Karthik D, Swaroop S (2017) Effect of laser peening on electrochemical properties of titanium stabilized 321 steel. Mater Chem Phys 193:147–155.  https://doi.org/10.1016/j.matchemphys.2017.02.022 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • G. Ranjith Kumar
    • 1
  • G. Rajyalakshmi
    • 1
    Email author
  • S. Swaroop
    • 2
  • S. Arul Xavier Stango
    • 2
  • U. Vijayalakshmi
    • 2
  1. 1.School of Mechanical EngineeringVellore Institute of TechnologyVelloreIndia
  2. 2.School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations