Numerical study of peristaltic motion of non-Newtonian fluid at high Reynolds number in an axisymmetric tube

  • Tariq Javed
  • Abdul Haleem HamidEmail author
  • Nasir Ali
Technical Paper


In the present investigation, we have studied numerically the peristaltic motion of micropolar fluid through a circular tube without imposing low Reynolds number and long wave length assumption. Galerkin’s finite element method has been used on the governing Navier–Stokes equation in the form of \(\psi - \omega\). The current study obtained the microrotation and streamline line directly from governing equations. The graphs of computed longitudinal velocity and pressure are plotted against different value of emerging parameter using stream function and vorticity. We observed that for small value of coupling number and microrotation parameter, the rotation of fluid particles is much faster than that for large value of coupling number and microrotation parameter.


Micropolar fluid Peristaltic flow Axisymmetric flow Finite element method 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Latham TW (1966) Fluid motion in a peristaltic pump. Master thesis, MIT, MassachusettsGoogle Scholar
  2. 2.
    Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelength at low Reynolds numbers. J Fluid Mech 37:799–825CrossRefGoogle Scholar
  3. 3.
    Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech Trans ASME 35:675–699CrossRefGoogle Scholar
  4. 4.
    Jaffrin MY (1973) Inertia and streamline curvature effects on peristalsis. Int J Eng Sci 11:681–699CrossRefGoogle Scholar
  5. 5.
    Weinberg SL, Eckstein EC, Shapiro AH (1971) An experimental study of peristaltic pumping. J Fluid Mech 49:461–479CrossRefGoogle Scholar
  6. 6.
    Reddy MG, Makinde OD (2016) Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq 223:1242–1248CrossRefGoogle Scholar
  7. 7.
    Tong P, Vawter D (1972) An analysis of peristaltic pumping. J Appl Mech 39(4):857–862CrossRefGoogle Scholar
  8. 8.
    Takabatake S, Ayukawa K (1982) Numerical study of two dimensional peristaltic flows. J Fluid Mech 122:439–465CrossRefGoogle Scholar
  9. 9.
    Takabatake S, Ayukawa K, Mori A (1988) Peristaltic pumping in circular tubes: a numerical study of fluid transport and its efficiency. J Fluid Mech 193:267–283CrossRefGoogle Scholar
  10. 10.
    Takabatake S, Ayukawa K, Sawa M (1989) Finite element analysis of two dimensional peristaltic flow (1st report, finite element solution). Jpn Soc Mech Eng 53:1207–1213Google Scholar
  11. 11.
    Takabatake S, Ayukawa K, Sawa M (1990) Finite element analysis of two dimensional peristaltic flow (2nd report, pressure-flow characteristics). Jpn Soc Mech Eng 56:3633–3637Google Scholar
  12. 12.
    Kumar BVR, Naidu KB (1995) A numerical study of peristaltic flows. Comput Fluid. 24:161–176CrossRefGoogle Scholar
  13. 13.
    Mekheimer KhS, Abd elmaboud Y (2008) The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys Lett A 372:1657–1665CrossRefGoogle Scholar
  14. 14.
    Siddiqui AM, Schwarz WH (1994) Peristaltic flow of a second order fluid in tubes. J Non Newtonian Fluid Mech 53:247–284CrossRefGoogle Scholar
  15. 15.
    Wang Y, Hayat T, Hutter K (2007) Peristaltic flow of a Johnson–Segalman fluid through a deformable tube. Theor Comput Fluid Dyn 21:369–380CrossRefGoogle Scholar
  16. 16.
    Srivastava LM, Srivastava VP (1988) Peristaltic transport of power law fluid: application to the ductus efferentes of the reproductive tract. Rheol Acta 27:428–433CrossRefGoogle Scholar
  17. 17.
    Usha S, Ramachandra Rao A (1997) Peristaltic transport of two layered power law fluid. J Biomech Eng Trans ASME 119:483–488CrossRefGoogle Scholar
  18. 18.
    Bohme G, Friedrich R (1983) Peristaltic flow of viscoelastic liquids. J Fluid Mech 128:109–122CrossRefGoogle Scholar
  19. 19.
    Eringen AC (1964) Non-linear theory of simple microelastic solids. Int J Eng 2(2):189–203Google Scholar
  20. 20.
    Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–217MathSciNetCrossRefGoogle Scholar
  21. 21.
    Eringen AC (1966) Theory of microploar fluid. J Math Mech 16:1–18MathSciNetGoogle Scholar
  22. 22.
    Mekheimer KhS, Abd Elmaboud Y (2008) The influence of a micropolar fluid on peristaltic transport in an annulus: application of the clot model. Appl Bionics Biomech 5(1):13–23CrossRefGoogle Scholar
  23. 23.
    Mekheimer KhS, El Kot MA (2008) The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech Sin 24(6):637–644MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mekheimer KhS (2008) Peristaltic flow of a magneto-micropolar fluid: effect of induced magnetic field. J Appl Math 153:763–777MathSciNetzbMATHGoogle Scholar
  25. 25.
    Mekheimer KhS, Abo-Elkhair RE, Husseny SZ, Ali AT (2011) Similarity solution for flow of a micro-polar fluid through a porous medium. AAM 6(1):2082–2093MathSciNetzbMATHGoogle Scholar
  26. 26.
    Abo-Elkhair RE, Mekheimer KhS, Moawad AM (2017) Combine impacts of electrokinetic variable viscosity and partial slip on peristaltic MHD flow through a micro-channel. Iran J Sci Technol Trans Sci. CrossRefGoogle Scholar
  27. 27.
    Abd Elmaboud Y, Abdelsalam SI, Mekheimer KhS (2018) Couple stress fluid flow in a rotating channel with peristalsis. J Hydrodyn 30:307–316CrossRefGoogle Scholar
  28. 28.
    Hayat T, Ali N, Abbas Z (2007) Peristaltic flow of a micropolar fluid in a channel with different wave forms. Phys Lett A 370:331–344CrossRefGoogle Scholar
  29. 29.
    Srinivasacharya D, Mishra M, Rao AR (2003) Peristaltic pumping of a micropolar fluid in a tube. Acta Mech 161:165–178zbMATHGoogle Scholar
  30. 30.
    Pandey SK, Tripathi D (2011) A mathematical model for peristaltic transport of micro-polar fluids. Appl Bionics Biomech 8:279–293MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang Y, Ali N, Hayat T, Oberlack M (2011) Peristaltic motion of a magnetohydrodynamic micropolar fluid in a tube. Appl Math Model 35:3737–3750MathSciNetCrossRefGoogle Scholar
  32. 32.
    Muthu P, RathishKumar BV, Chandra P (2008) Peristaltic motion of micropolar fluid in circular cylindrical tubes: effect of wall properties. Appl Math Model 32:2019–2033MathSciNetCrossRefGoogle Scholar
  33. 33.
    Javed T, Hamid AH, Ahmed B, Ali N (2017) Effect of high Reynolds number on hydromagnetic peristaltic flow in an inclined channel using finite element method. J Korean Phys Soc 71(12):950–962CrossRefGoogle Scholar
  34. 34.
    Hamid AH, Javed T, Ahmed B, Ali N (2017) Numerical study of two-dimensional non-Newtonian peristaltic flow for long wavelength and moderate Reynolds number. J Braz Soc Mech Sci Eng 39:4421–4430CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsInternational Islamic University IslamabadIslamabadPakistan

Personalised recommendations