Materials used for sinking EDM electrodes: a review

  • Tiago Czelusniak
  • Camila Fernandes Higa
  • Ricardo Diego Torres
  • Carlos Augusto Henning Laurindo
  • José Mário Fernandes de Paiva Júnior
  • Armin Lohrengel
  • Fred Lacerda AmorimEmail author


Over the years, sinking electrical discharge machining has become one of the most important production technologies to manufacture very accurate three-dimensional complex components on any electrically conductive material. This article reports a literature review on the diversity of conventional and non-conventional materials that are used or have potential to be used as EDM electrodes. In addition, additive manufacturing of EDM electrodes are also reviewed.


Sinking electrical discharge machining EDM electrodes Materials for electrodes Additive manufacturing 

List of symbols


Discharge current (A)


Pulse interval time (μs)


Dielectric inlet pressure (Pa)


Ignition delay time (μs)


Discharge duration (μs)


Pulse duration (μs)


Pulse cycle time (μs)


Discharge voltage (V)


Open-circuit voltage (V)


Electrode wear rate (mm3/min)


Material removal rate (mm3/min)


Discharge energy (J)



Electrical discharge machining


Material removal rate


Tool wear rate


Austempered ductile iron


Volumetric wear ratio


Additive manufacturing


Rapid prototyping


Rapid tooling


Rapid manufacturing




Selective laser sintering


Selective laser melting


  1. 1.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. CrossRefGoogle Scholar
  2. 2.
    Klocke F, König W (1997) Fertigungsverfahren 3. Fertigungsverfahren - Abtragen, Generieren und Lasermaterialbearbeitung. CrossRefGoogle Scholar
  3. 3.
    Ozgedik A, Cogun C (2005) An experimental investigation of tool wear in electric discharge machining. Int J Adv Manuf Technol 27:488–500. CrossRefGoogle Scholar
  4. 4.
    Jha B, Ram K, Rao M (2011) An overview of technology and research in electrode design and manufacturing in sinking electrical discharge machining. J Eng Sci Technol Rev 4:118–130CrossRefGoogle Scholar
  5. 5.
    Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54:64–87. CrossRefGoogle Scholar
  6. 6.
    Kern R (2008) Sinker electrode material selection. EDM Today 4:32–38Google Scholar
  7. 7.
    König W (1991) Advanced ceramics: sparks machine ceramics. PMI 23:96–100Google Scholar
  8. 8.
    DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66:4095–4103. CrossRefGoogle Scholar
  9. 9.
    Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73:7900–7909. CrossRefGoogle Scholar
  10. 10.
    Schumacher BM (2004) After 60 years of EDM the discharge process remains still disputed. J Mater Process Technol 149:376–381. CrossRefGoogle Scholar
  11. 11.
    Lazarenko BR (1944) Die Elektrodenfunkenbearbeitung von Metallen. Vestnik Maschinostroia, MoscouGoogle Scholar
  12. 12.
    Khan D, Goswami H, Somkuwar V (2018) Process parameter optimization of die sinking EDM: a review. Int Res J Eng Technol 05:1493–1500Google Scholar
  13. 13.
    Drozda T, Wick C, Benedict JT et al (1983) Tool and manufacturing engineers handbook: a reference book for manufacturing engineers, managers, and technicians. Society of Manufacturing Engineers, DearbornGoogle Scholar
  14. 14.
    Abbas NM, Solomon DG, Bahari F (2006) EDM : global techniques and local scenario. In: Proceedings of the 1st international conference and 7th AUN/SEED-Net fieldwise seminar on manufacturing and material processing, pp 71–76Google Scholar
  15. 15.
  16. 16.
    Amorim FL (2002) Tecnologia de eletroerosao por penetracao da liga de alumínio AMP 8000 e da liga de cobre CuBe para ferramentas de moldagem para materiais plásticosGoogle Scholar
  17. 17.
    Mohri N, Suzuki M, Furuya M et al (1995) Electrode wear process in electrical discharge machinings. CIRP Ann Manuf Technol 44:165–168. CrossRefGoogle Scholar
  18. 18.
    Che Haron CH, Deros BM, Ginting A, Fauziah M (2001) Investigation on the influence of machining parameters when machining tool steel using EDM. J Mater Process Technol 116:84–87. CrossRefGoogle Scholar
  19. 19.
    Wang CC, Yan BH, Chow HM, Suzuki Y (1999) Cutting austempered ductile iron using an EDM sinker. J Mater Process Technol 88:83–89. CrossRefGoogle Scholar
  20. 20.
    Ozgedik A, Cogun C (2006) An experimental investigation of tool wear in electric discharge machining. Int J Adv Manuf Technol 27:488–500. CrossRefGoogle Scholar
  21. 21.
    Khan AA, Saifuddin SE (2005) Wear characteristics of copper and aluminum electrodes during EDM of stainless steel and carbide. In: Proceedings of the international conference on mechanical engineering, Dhaka, Bangladsh, pp 1–5Google Scholar
  22. 22.
    Khan AA (2008) Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes. Int J Adv Manuf Technol 39:482–487. CrossRefGoogle Scholar
  23. 23.
    Khan AA, Ali MY, Haque MM (2009) A study of electrode shape configuration on the performance of die sinking EDM. Int J Mech Mater Eng 4:19–23Google Scholar
  24. 24.
    Kishan B, Sudheer Premkumar B, Gajanana S et al (2018) Development of mathematical model for metal removal rate on EDM using copper & brass electrodes. Mater Today Proc 5:4345–4352CrossRefGoogle Scholar
  25. 25.
    Her MG, Weng FT (2001) Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode. Int J Adv Manuf Technol 17:715–719. CrossRefGoogle Scholar
  26. 26.
    Rebelo JC, Dias Ä, Mesquita R et al (2000) An experimental study on electro-discharge machining and polishing of high strength copper–beryllium alloys. J Mater Process Technol 103:389–397CrossRefGoogle Scholar
  27. 27.
    Amorim FL, Weingaertner WL (2004) Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds. Braz Soc Mech Sci Eng 26:137–144. CrossRefGoogle Scholar
  28. 28.
    Singh S, Maheshwari S, Pandey PC (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149:272–277. CrossRefGoogle Scholar
  29. 29.
    Payal HS, Choudhary R, Singh S (2008) Analysis of electro discharge machined surfaces of EN-31 tool steel. J Sci Ind Res 67:1072–1077Google Scholar
  30. 30.
    Goyal P, Suri NM, Kumar S, Kumar R (2017) Investigating the surface properties of EN-31 die-steel after machining with powder metallurgy EDM electrodes. Mater Today Proc 4:3694–3700CrossRefGoogle Scholar
  31. 31.
    Amorim FL, Weingaertner WL (2005) The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. J Mater Process Technol 166:411–416. CrossRefGoogle Scholar
  32. 32.
    Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29:366–371. CrossRefGoogle Scholar
  33. 33.
    Kiyak M, Çakır O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Technol 191:141–144. CrossRefGoogle Scholar
  34. 34.
    Zarepour H, Fadaei Tehrani A, Karimi D, Amini S (2007) Statistical analysis on electrode wear in EDM of tool steel DIN 1.2714 used in forging dies. J Mater Process Technol 187–188:711–714. CrossRefGoogle Scholar
  35. 35.
    Che Haron CHC, Ghani JA, Burhanuddin Y et al (2008) Copper and graphite electrodes performance in electrical-discharge machining of XW42 tool steel. J Mater Process Technol 201:570–573. CrossRefGoogle Scholar
  36. 36.
    Suman R, Gupta A, Singh PK (2017) Effect of current setting on tool wear rate for copper electrodes on die sinking EDM. In: Souvenir cum proceeding for all India seminar on advances in technology to mitigate the effect of natural hazards, pp 64–67Google Scholar
  37. 37.
    Raj SON, Prabhu S (2017) Analysis of multi objective optimisation using TOPSIS method in EDM process with CNT infused copper electrode. Int J Mach Mach Mater 19:76. CrossRefGoogle Scholar
  38. 38.
    Of EDM, Aisi H, Steel H et al (2008) Performance of copper electrode in electrical discharge machining (EDM) of AISI H13 harden steel. Int J Mech Mater Eng 3:25–29Google Scholar
  39. 39.
    Chen SL, Hsieh SF, Lin HC et al (2008) Electrical discharge machining of a NiAlFe ternary shape memory alloy. J Alloys Compd 464:446–451. CrossRefGoogle Scholar
  40. 40.
    Ho SK, Aspinwall DK, Voice W (2007) Use of powder metallurgy (PM) compacted electrodes for electrical discharge surface alloying/modification of Ti–6Al–4V alloy. J Mater Process Technol 191:123–126. CrossRefGoogle Scholar
  41. 41.
    Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci 253:9007–9016. CrossRefGoogle Scholar
  42. 42.
    Verma V, Sahu R (2017) Process parameter optimization of die-sinking EDM on titanium grade-V alloy (Ti6Al4V) using full factorial design approach. Mater Today Proc 4:1893–1899CrossRefGoogle Scholar
  43. 43.
    Tsai MY, Fang CS, Yen MH (2018) Vibration-assisted electrical discharge machining of grooves in a titanium alloy (Ti–6Al–4V). Int J Adv Manuf Technol 97:297–304. CrossRefGoogle Scholar
  44. 44.
    Sahu AK, Mahapatra SS (2019) Optimization of electrical discharge machining of titanium alloy (Ti6Al4V) by grey relational analysis based firefly algorithm. In: AlMangour B (ed) Additive manufacturing of emerging materials. Springer, Cham, pp 29–53CrossRefGoogle Scholar
  45. 45.
    Khan MAR, Rahman MM, Kadirgama K (2015) An experimental investigation on surface finish in die-sinking EDM of Ti–5Al–2.5Sn. Int J Adv Manuf Technol 77:1727–1740. CrossRefGoogle Scholar
  46. 46.
    D’Urso G, Merla C (2014) Workpiece and electrode influence on micro-EDM drilling performance. Precis Eng 38:903–914. CrossRefGoogle Scholar
  47. 47.
    Karunakaran K, Chandrasekaran M (2017) Machineability study on die sinking EDM of Inconel 800 with electrolyte copper electrode. J Eng Appl Sci 12:2407–24011Google Scholar
  48. 48.
    Jadam T, Upadhyay C, Datta S, et al (2017) Analysis on topography and metallurgical aspects of EDMed work surface of Inconel 718 obtained using triangular cross sectioned copper tool electrode. In: 2017 international conference on advances in mechanical, industrial, automation and management systems, AMIAMS 2017—proceedings, pp 151–155Google Scholar
  49. 49.
    Upadhyay C, Datta S, Masanta M, Mahapatra SS (2017) An experimental investigation emphasizing surface characteristics of electro-discharge-machined Inconel 601. J Braz Soc Mech Sci Eng 39:3051–3066. CrossRefGoogle Scholar
  50. 50.
    Kuppan P, Narayanan S, Oyyaravelu R, Balan ASS (2017) Performance evaluation of electrode materials in electric discharge deep hole drilling of Inconel 718 superalloy. Procedia Eng 174:53–59CrossRefGoogle Scholar
  51. 51.
    Pachaury Y, Tandon P (2017) An overview of electric discharge machining of ceramics and ceramic based composites. J Manuf Process 25:369–390. CrossRefGoogle Scholar
  52. 52.
    Zhang JH, Lee TC, Lau WS (1997) Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic. J Mater Process Technol 63:908–912. CrossRefGoogle Scholar
  53. 53.
    Mohri N, Fukuzawa Y, Tani T et al (1996) Assisting electrode method for machining insulating ceramics. CIRP Ann Manuf Technol 45:201–204. CrossRefGoogle Scholar
  54. 54.
    Ojha N, Zeller F, Mueller C, Reinecke H (2015) Analyzing the electrical pulses occurring during EDM of non-conductive Si3N4 ceramics. Key Eng Mater 651–653:659–664. CrossRefGoogle Scholar
  55. 55.
    Moudood A, Yeakub Ali M, Jaafar I (2014) Investigation of the machinability of non-conductive ZrO2 with different tool electrodes in EDM relative humidity and flax fibre composites view project micro wire electro discharge grinding: optimization of material removal rate and surface roughness vie. Int J Automot Mech Eng 10:1866–1876. CrossRefGoogle Scholar
  56. 56.
    Agarwal N, Shukla S, Agarwal V et al (2015) Investigation of material removal method in EDM for non-conductive materials. Eur J Adv Eng Technol 2:11–13Google Scholar
  57. 57.
    Lee SH, Li X (2003) Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. J Mater Process Technol 139:315–321. CrossRefGoogle Scholar
  58. 58.
    Luis CJ, Puertas I, Villa G (2005) Material removal rate and electrode wear study on the EDM of silicon carbide. J Mater Process Technol 164–165:889–896. CrossRefGoogle Scholar
  59. 59.
    Sánchez JA, Cabanes I, López de Lacalle LN, Lamikiz A (2001) Development of optimum electrodischarge machining technology for advanced ceramics. Int J Adv Manuf Technol 18:897–905. CrossRefGoogle Scholar
  60. 60.
    Muttamara A, Fukuzawa Y, Mohri N, Tani T (2009) Effect of electrode material on electrical discharge machining of alumina. J Mater Process Technol 209:2545–2552. CrossRefGoogle Scholar
  61. 61.
    Liew PJ, Nurlishafiqa Z, Ahsan Q et al (2018) Experimental investigation of RB-SiC using Cu–CNF composite electrodes in electrical discharge machining. Int J Adv Manuf Technol 98:1–10. CrossRefGoogle Scholar
  62. 62.
    Torres A, Luis CJ, Puertas I (2017) EDM machinability and surface roughness analysis of TiB2using copper electrodes. J Alloys Compd 690:337–347. CrossRefGoogle Scholar
  63. 63.
    Ramulu M, Taya M (1989) EDM machinability of SiCw/Al composites. J Mater Sci 24:1103–1108. CrossRefGoogle Scholar
  64. 64.
    Dhupal D, Naik S, Das SR (2018) Modelling and optimization of Al–SiC MMC through EDM process using copper and brass electrodes. Mater Today Proc 5:11295–11303CrossRefGoogle Scholar
  65. 65.
    Suresh Kumar S, Uthayakumar M, Thirumalai Kumaran S et al (2018) Investigating the surface integrity of aluminium based composites machined by EDM. Def Technol. CrossRefGoogle Scholar
  66. 66.
    Yan BH, Wang CC (1999) Machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode. J Mater Process Technol 95:222–231. CrossRefGoogle Scholar
  67. 67.
    Liu C-C (2003) Microstructure and tool electrode erosion in EDMed of TiN/Si3N4 composites. Mater Sci Eng A 363:221–227. CrossRefGoogle Scholar
  68. 68.
    Kumar NM, Senthil Kumaran S, Kumaraswamidhas LA (2015) An investigation of mechanical properties and material removal rate, tool wear rate in EDM machining process of AL2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. J Alloys Compd 650:318–327. CrossRefGoogle Scholar
  69. 69.
    Rengasamy NV, Rajkumar M, Senthil Kumaran S (2016) An analysis of mechanical properties and optimization of EDM process parameters of Al 4032 alloy reinforced with ZrB2 and TiB2 in situ composites. J Alloys Compd 662:325–338. CrossRefGoogle Scholar
  70. 70.
    Hourmand M, Farahany S, Sarhan AAD, Noordin MY (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al–Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77:831–838. CrossRefGoogle Scholar
  71. 71.
    Puertas I, Luis CJ, Álvarez L (2004) Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co. J Mater Process Technol 153–154:1026–1032. CrossRefGoogle Scholar
  72. 72.
    Selvarajan L, Sathiya Narayanan C, Jeyapaul R, Manohar M (2016) Optimization of EDM process parameters in machining Si3N4–TiN conductive ceramic composites to improve form and orientation tolerances. Meas J Int Meas Confed 92:114–129. CrossRefGoogle Scholar
  73. 73.
    Yongfeng G, Yerui F, Li W et al (2018) Experimental investigation of EDM parameters for ZrB2–SiC ceramics machining. Procedia CIRP 68:46–51CrossRefGoogle Scholar
  74. 74.
    Hanaoka D, Fukuzawa Y, Ramirez C et al (2013) Electrical discharge machining of ceramic/carbon nanostructure composites. Procedia CIRP 6:95–100CrossRefGoogle Scholar
  75. 75.
  76. 76.
    Aas K (2004) Performance of two graphite electrode qualities in EDM of seal slots in a jet engine turbine vane. J Mater Process Technol 149:152–156. CrossRefGoogle Scholar
  77. 77.
    Salman Ö, Kayacan MC (2008) Evolutionary programming method for modeling the EDM parameters for roughness. J Mater Process Technol 200:347–355. CrossRefGoogle Scholar
  78. 78.
    Prabhu S, Vinayagam B (2009) Effect of graphite electrode material on EDM of AISI D2 tool steel with multiwall carbon nanotube using regression analysis. Int J Eng 1:93–104Google Scholar
  79. 79.
    Younis MA, Abbas MS, Gouda MA et al (2015) Effect of electrode material on electrical discharge machining of tool steel surface. Ain Shams Eng J 6:977–986. CrossRefGoogle Scholar
  80. 80.
    Muttamara A (2015) Comparison performances of EDM on Ti6Al4V with two graphite grades. Int J Chem Eng Appl 6:250–253. CrossRefGoogle Scholar
  81. 81.
    Santoki PN, Bhabhor AP (2015) Parametric study for overcut using EDM with tool of graphite, copper and silver. Int J Innov Emerg Res Eng 2:31–38Google Scholar
  82. 82.
    Rahul Abhishek K, Datta S et al (2017) Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J Braz Soc Mech Sci Eng 39:3499–3527. CrossRefGoogle Scholar
  83. 83.
    Torres A, Puertas I, Luis CJ (2016) EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes. Int J Adv Manuf Technol 84:2671–2688. CrossRefGoogle Scholar
  84. 84.
    NAECO® ELKON® R25 copper tungsten RWMA class 11. Accessed 8 Sept 2018
  85. 85.
    Lee HT, Hsu FC, Tai TY (2004) Study of surface integrity using the small area EDM process with a copper–tungsten electrode. Mater Sci Eng A 364:346–356. CrossRefGoogle Scholar
  86. 86.
    Ali R, Moeed DKM, Rizvi SAH (2016) Experimental analysis of machining parameters for EDM of AISI 4340 steel using copper–tungsten electrode. J Therm Energy Syst 1:33Google Scholar
  87. 87.
    He L, Yu J, Duan W et al (2016) Copper–tungsten electrode wear process and carbon layer characterization in electrical discharge machining. Int J Adv Manuf Technol 85:1759–1768. CrossRefGoogle Scholar
  88. 88.
    Marafona J, Wykes C (2000) New method of optimising material removal rate using EDM with copper–tungsten electrodes. Int J Mach Tools Manuf 40:153–164. CrossRefGoogle Scholar
  89. 89.
    Marafona JD (2009) Black layer affects the thermal conductivity of the surface of copper–tungsten electrode. Int J Adv Manuf Technol 42:482–488. CrossRefGoogle Scholar
  90. 90.
    Mathew N, Kumar D, Beri N, Kumar A (2014) Study of material removal rate of different tool materials during EDM of H11 steel at reverse polarity. Int J Adv Eng Technol 5:25–30Google Scholar
  91. 91.
    Theisen W, Schuermann A (2004) Electro discharge machining of nickel-titanium shape memory alloys. Mater Sci Eng A 378:200–204. CrossRefGoogle Scholar
  92. 92.
    Zainal N, Mohd Zain A, Sharif S (2016) A study of electrode wear ratio on EDM of Ti–6Al–4V with copper–tungsten electrode. MATEC Web Conf 78:01013. CrossRefGoogle Scholar
  93. 93.
    Kumar S, Batish A, Singh R, Bhattacharya A (2017) Effect of cryogenically treated copper–tungsten electrode on tool wear rate during electro-discharge machining of Ti–5Al–2.5Sn alloy. Wear 386–387:223–229. CrossRefGoogle Scholar
  94. 94.
    Kwon YS, Chung ST, Lee S, Noh JW, Park S, German RM (2007) Development of the high performance W–Cu electrode. In: International conference on powder metallurgy & particulate materials, Advances in powder metallurgy & particulate materials, vol 9, pp 111–118Google Scholar
  95. 95.
    Stampfl J, Leitgeb R, Cheng Y-L, Prinz FB (1999) Electro-discharge machining of mesoscopic parts with electroplated copper and hot-pressed silver tungsten electrodes. J Micromech Microeng 10:1–6. CrossRefGoogle Scholar
  96. 96.
    Yu Z, Jun T, Masanori K (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149:353–357. CrossRefGoogle Scholar
  97. 97.
    Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209:1706–1716. CrossRefGoogle Scholar
  98. 98.
  99. 99.
    D’Urso G, Maccarini G, Ravasio C (2016) Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol 85:2013–2025. CrossRefGoogle Scholar
  100. 100.
    Surekha B, Swain S, Suleman AJ, Choudhury SD (2017) Performance capabilities of EDM of high carbon high chromium steel with copper and brass electrodes. In: AIP conference proceedings. AIP Publishing LLC, Melville, p 020070Google Scholar
  101. 101.
    MMCC copper/graphite fiber GC 7-340 metal matrix composite. Accessed 7 Sept 2018
  102. 102.
    Sundaram MM, Rajurkar KP (2006) A study on the performance of copper–graphite as tool material in micromachining by micro electro discharge machining. University of Nebraska-Lincoln, LincolnGoogle Scholar
  103. 103.
    Klocke F, Holsten M, Klink A (2016) Technological and economic investigations on the application of metal infiltrated graphite electrodes for the sinking EDM of cemented carbides. Procedia CIRP 42:632–637CrossRefGoogle Scholar
  104. 104.
  105. 105.
    Fu Y, Miyamoto T, Natsu W et al (2016) Study on influence of electrode material on hole drilling in micro-EDM. Procedia CIRP 42:516–520CrossRefGoogle Scholar
  106. 106.
  107. 107.
    Tsai YY, Masuzawa T (2004) An index to evaluate the wear resistance of the electrode in micro-EDM. J Mater Process Technol 149:304–309. CrossRefGoogle Scholar
  108. 108.
    NAECO® ELKON® 30S silver tungsten contact material ASTM B631. Accessed 8 Sept 2018
  109. 109.
    Kadirvel A, Hariharan P, Gowri S (2013) Experimental investigation on the electrode specific performance in micro-EDM of die-steel. Mater Manuf Process 28:390–396. CrossRefGoogle Scholar
  110. 110.
  111. 111.
    Hourmand M, Sarhan AAD, Sayuti M (2017) Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review. Int J Adv Manuf Technol 91:1023–1056. CrossRefGoogle Scholar
  112. 112.
    Bhaumik M, Maity KP (2014) Study the effect of tungsten carbide electrode on stainless steel (AISI 304) material in die sinking EDM. J Mater Sci Mech Eng 1:1–6Google Scholar
  113. 113.
    Antar M, Chantzis D, Marimuthu S, Hayward P (2016) High speed EDM and laser drilling of aerospace alloys. Procedia CIRP 42:526–531CrossRefGoogle Scholar
  114. 114.
    Huang CH, Yang AB, Hsu CY (2018) The optimization of micro EDM milling of Ti–6Al–4V using a grey Taguchi method and its improvement by electrode coating. Int J Adv Manuf Technol 96:3851–3859. CrossRefGoogle Scholar
  115. 115.
    Chiou AH, Tsao CC, Hsu CY (2015) A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. Int J Adv Manuf Technol 78:1857–1864. CrossRefGoogle Scholar
  116. 116.
  117. 117.
    Tang Y, Fuh JYH, Lu L et al (2002) Formation of electrical discharge machining electrode via laser cladding. Rapid Prototyp J 8:315–319. CrossRefGoogle Scholar
  118. 118.
    Altan T, Lilly BW, Kruth JP et al (1993) Advanced techniques for die and mold manufacturing. CIRP Ann Manuf Technol 42:707–716. CrossRefGoogle Scholar
  119. 119.
    Arthur A, Dickens PM, Cobb RC (1996) Using rapid prototyping to produce electrical discharge machining electrodes. Rapid Prototyp J 2:4–12. CrossRefGoogle Scholar
  120. 120.
    Yarlagadda PKD, Christodoulou P, Subramanian VS (1999) Feasibility studies on the production of electro-discharge machining electrodes with rapid prototyping and the electroforming process. J Mater Process Technol 89–90:231–237. CrossRefGoogle Scholar
  121. 121.
    Yang B, Leu MC (1999) Integration of rapid prototyping and electroforming for tooling application. CIRP Ann Manuf Technol 48:119–122. CrossRefGoogle Scholar
  122. 122.
    Rennie A, Bocking C, Bennett G (2001) Electroforming of rapid prototyping mandrels for electro-discharge machining electrodes. J Mater Process 110:186–196. CrossRefGoogle Scholar
  123. 123.
    Dimla DE, Hopkinson N, Rothe H (2004) Investigation of complex rapid EDM electrodes for rapid tooling applications. Int J Adv Manuf Technol 23:249–255. CrossRefGoogle Scholar
  124. 124.
    Norasetthekul S, Eubank PT, Bradley WL et al (1999) Use of zirconium diboride copper as an electrode in plasma applications. J Mater Sci 34:1261–1270. CrossRefGoogle Scholar
  125. 125.
    Zhao J, Li Y, Zhang J et al (2003) Analysis of the wear characteristics of an EDM electrode made by selective laser sintering. J Mater Process Technol 138:475–478. CrossRefGoogle Scholar
  126. 126.
    Saxena P, Metkar RM (2019) Development of electrical discharge machining (EDM) electrode using fused deposition modeling (FDM). In: Kumar LJ, Pandey PM, Wimpenny DI (eds) 3D printing and additive manufacturing technologies. Springer, Singapore, pp 257–268CrossRefGoogle Scholar
  127. 127.
    Singh Phull G, Kumar S, Walia RS (2018) Electroforming defects during metal deposition on plastic substrate produced by additive manufacturing. Int J Sci Res Sci Technol 4:1179–1188Google Scholar
  128. 128.
    Dürr H, Pilz R, Eleser NS (1999) Rapid tooling of EDM electrodes by means of selective laser sintering. Comput Ind 39:35–45. CrossRefGoogle Scholar
  129. 129.
    Tay FEH, Haider EA (2001) The potential of plating techniques in the development of rapid EDM tooling. Int J Adv Manuf Technol 18:892–896. CrossRefGoogle Scholar
  130. 130.
    Meena VK, Nagahanumaiah (2006) Optimization of EDM machining parameters using DMLS electrode. Rapid Prototyp J 12:222–228. CrossRefGoogle Scholar
  131. 131.
    Das S, Beama JJ, Wohlert M, Bourell DL (1998) Direct laser freeform fabrication of high performance metal components. Rapid Prototyp J 4:112–117. CrossRefGoogle Scholar
  132. 132.
    Kumar S, Kruth JP (2010) Composites by rapid prototyping technology. Mater Des 31:850–856. CrossRefGoogle Scholar
  133. 133.
    Kumar Sahu A, Chatterjee S, Kumar Nayak P, Mahapatra SS (2018) Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol. In: IOP conference series: materials science and engineering. IOP Publishing, Bristol, p 012033Google Scholar
  134. 134.
    Tietz TE, Wilson JW (1965) Behavior and properties of refactory metals. Leland Stanford Junior University, StanfordGoogle Scholar
  135. 135.
    Asphahani A, Mattews SJ (1989) High molybdenum nickel-base alloy. U.S. Patent 4846885 July 11Google Scholar
  136. 136.
    Nicholson RD, Jain S (1989) Composite aluminum molybdenum sheet. U.S. Patent 4957821Google Scholar
  137. 137.
    Kobayashi N, Suzuki M, Kondo S, et al (1989) Superconducting alloys comprising tungsten, molybdenum, silicon and oxygen. U.S Patent 5013526AGoogle Scholar
  138. 138.
    Yih P, Chung D (1995) Powder metallurgy fabrication of metal matrix.pdf. Int J Powder Metall 31:335–340Google Scholar
  139. 139.
    Bartolomé JF, Díaz M, Requena J et al (1999) Mullite/molybdenum ceramic–metal composites. Acta Mater 47:3891–3899. CrossRefGoogle Scholar
  140. 140.
    Gerd R, Udo S (2000) Powder-metallurgically produced composite material and method for its production. U.S. Patent 6312495Google Scholar
  141. 141.
    Yih P, Chung DDL (1995) Copper-matrix molybdenum particle composites made from copper coated molybdenum powder. J Electron Mater 24:841–851. CrossRefGoogle Scholar
  142. 142.
    Amorim FL, Lohrengel A, Neubert V et al (2014) Selective laser sintering of Mo–CuNi composite to be used as EDM electrode. Rapid Prototyp J 20:59–68. CrossRefGoogle Scholar
  143. 143.
    Yih P, Chung D (1997) Titanium diboride copper-matrix composites.pdf. J Mater Sci 32:1703–1709. CrossRefGoogle Scholar
  144. 144.
    Smith AV, Chung DDL (1996) Titanium diboride particle-reinforced aluminium with high wear resistance. J Mater Sci 31:5961–5973. CrossRefGoogle Scholar
  145. 145.
    Dipietro MS, Kumar KS, Whittenberger JD (1991) Compression behavior of TiB2 particulate reinforced composites of Al22Fe3Ti8. J Mater Res 6:530–538CrossRefGoogle Scholar
  146. 146.
    Whittenberger JD, Viswanadham RK, Mannan SK, Kumar SK (1989) 100 to 1400 K slow strain rate compressive behavior of small grain size NiAl/Ni2AlTi alloys and NiAl/Ni2AlTi–TiB2 composites. J Mater Res 4:1164–1171CrossRefGoogle Scholar
  147. 147.
    Slaughter ER (1983) Titanium-diboride dispersion strengthened iron materials. U.S. Patent 4419130AGoogle Scholar
  148. 148.
    Dallaire S, Champagne B (1986) TiB2-based materials and process of producing the same. U.S. Patent 06910859Google Scholar
  149. 149.
    Joo LA, Tucker KW, Shaner JR (1985) Metal reinforced porous refractory hard metal bodies. U.S. Patent 4617053Google Scholar
  150. 150.
    Leong CC, Lu L, Fuh JYH, Wong YS (2002) In-situ formation of copper matrix composites by laser sintering. Mater Sci Eng A 338:81–88. CrossRefGoogle Scholar
  151. 151.
    Lacerda Amorim F, Lohrengel A, Schaefer G, Czelusniak T (2013) A study on the SLS manufacturing and experimenting of TiB2–CuNi EDM electrodes. Rapid Prototyp J 19:418–429. CrossRefGoogle Scholar
  152. 152.
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364. CrossRefGoogle Scholar
  153. 153.
    Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng A 346:310–319. CrossRefGoogle Scholar
  154. 154.
    Monteverde F, Bellosi A, Guicciardi S (2002) Processing and properties of zirconium diboride-based composites. J Eur Ceram Soc 22:279–288. CrossRefGoogle Scholar
  155. 155.
    Zaw HM, Fuh JYH, Nee AYC, Lu L (1999) Formation of a new EDM electrode material using sintering techniques. J Mater Process Technol 89–90:182–186. CrossRefGoogle Scholar
  156. 156.
    Khanra AK, Pathak LC, Godkhindi MM (2009) Application of new tool material for electrical discharge machining (EDM). Bull Mater Sci 32:401–405. CrossRefGoogle Scholar
  157. 157.
    Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of copper–nickel zirconium diboride as EDM electrodes manufactured by selective laser sintering. Int J Adv Manuf Technol 72:905–917. CrossRefGoogle Scholar
  158. 158.
    Uhlmann E, Bergmann A, Bolz R (2018) Manufacturing of carbide tools by selective laser melting. Procedia Manuf 21:765–773CrossRefGoogle Scholar
  159. 159.
    Uhlmann E, Bergmann A, Bolz R, Gridin W (2018) Application of additive manufactured tungsten carbide tool electrodes in EDM. Procedia CIRP 68:86–90CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Tiago Czelusniak
    • 1
  • Camila Fernandes Higa
    • 1
  • Ricardo Diego Torres
    • 1
  • Carlos Augusto Henning Laurindo
    • 1
  • José Mário Fernandes de Paiva Júnior
    • 2
  • Armin Lohrengel
    • 3
  • Fred Lacerda Amorim
    • 1
    Email author
  1. 1.Mechanical Engineering Graduate Program – PPGEMPontifícia Universidade Católica do Paraná – PUCPRCuritibaBrazil
  2. 2.McMaster Manufacturing Research InstituteMcMaster UniversityHamiltonCanada
  3. 3.IMW- Fritz-Süchting-Institut für MaschinenwesenTechnische Universität Clausthal – TUClausthalClausthal-ZellerfeldGermany

Personalised recommendations