Advertisement

Non-intrusive polynomial chaos expansion for topology optimization using polygonal meshes

  • Nilton Cuellar
  • Anderson PereiraEmail author
  • Ivan F. M. Menezes
  • Americo CunhaJr.
Technical Paper

Abstract

This paper deals with the applications of stochastic spectral methods for structural topology optimization in the presence of uncertainties. A non-intrusive polynomial chaos expansion is integrated into a topology optimization algorithm to calculate low-order statistical moments of the mechanical–mathematical model response. This procedure, known as robust topology optimization, can optimize the mean of the compliance while simultaneously minimizing its standard deviation. In order to address possible variabilities in the loads applied to the mechanical system of interest, magnitude and direction of the external forces are assumed to be uncertain. In this probabilistic framework, forces are described as a random field or a set of random variables. Representation of the random objects and propagation of load uncertainties through the model are efficiently done through Karhunen–Loève and polynomial chaos expansions. We take advantage of using polygonal elements, which have been shown to be effective in suppressing checkerboard patterns and reducing mesh dependency in the solution of topology optimization problems. Accuracy and applicability of the proposed methodology are demonstrated by means of several topology optimization examples. The obtained results, which are in excellent agreement with reference solutions computed via Monte Carlo method, show that load uncertainties play an important role in optimal design of structural systems, so that they must be taken into account to ensure a reliable optimization process.

Keywords

Topology optimization Stochastic spectral approach Polynomial chaos Karhunen–Loève expansion Robust optimization Polygonal finite element 

Notes

Acknowledgements

NC acknowledges the financial support from the Group of Technology in Computer Graphics (Tecgraf/PUC-Rio), Rio de Janeiro, Brazil. AP and IFMM acknowledge the financial support from the National Council for Scientific and Technological Development (CNPq) under projects 312280/2015-7 and 309708/2015-0, respectively. AP and ACJr are thankful for the support from Carlos Chagas Filho Research Foundation of Rio de Janeiro State (FAPERJ) under grants E-26/203.189/2016, E-26/010.002.178/2015 and E-26/010.000.805/2018. The information provided in this paper is the sole opinion of the authors and does not necessarily reflect the views of the sponsoring agencies..

References

  1. 1.
    Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258:55–62.  https://doi.org/10.1016/j.cma.2013.02.007 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonietti P, Bruggi M, Scacchi S, Verani M (2017) On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput Math Appl 74(5):1091–1109.  https://doi.org/10.1016/j.camwa.2017.05.025 (SI: SDS2016—Methods for PDEs) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asadpoure A, Tootkabonia M, Guest J (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89:1031–1041.  https://doi.org/10.1016/j.compstruc.2010.11.004 CrossRefGoogle Scholar
  4. 4.
    Atkinson KE (2009) The numerical solution of integral equations of the second kind, reissue edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. 5.
    Banichuk N, Neittaanmäki P (2010) Structural optimization with uncertainties. Springer, DordrechtCrossRefGoogle Scholar
  6. 6.
    Bellizzi S, Sampaio R (2012) Smooth decomposition of random fields. J Sound Vib 331:3509–3520.  https://doi.org/10.1016/j.jsv.2012.03.030 CrossRefGoogle Scholar
  7. 7.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Betz W, Papaioannou I, Straub D (2014) Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput Methods Appl Mech Eng 271:109–129.  https://doi.org/10.1016/j.cma.2013.12.010 CrossRefzbMATHGoogle Scholar
  10. 10.
    Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218.  https://doi.org/10.1016/j.cma.2007.03.003 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Birge J, Louveaux F (2011) Introduction to stochastic programming. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Brezis H (2010) Functional analysis, Sobolev spaces and partial differential equations. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Bruggi M (2008) On the solution of the checkerboard problem in mixed-FEM topology optimization. Comput Struct 86:1819–1829.  https://doi.org/10.1016/j.compstruc.2008.04.008 CrossRefGoogle Scholar
  14. 14.
    Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524.  https://doi.org/10.1007/s00158-009-0449-2 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ciarlet PG (2013) Linear and nonlinear functional analysis with applications. SIAM, PhiladelphiazbMATHGoogle Scholar
  16. 16.
    da Silva G, Cardoso E (2017) Stress-based topology optimization of continuum structures under uncertainties. Comput Methods Appl Mech Eng 313:647–672.  https://doi.org/10.1016/j.cma.2016.09.049 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dapogny C, Faure A, Michailidis G, Allaire G, Couvelas A, Estevez R (2017) Geometric constraints for shape and topology optimization in architectural design. Comput Mech 59:933–965.  https://doi.org/10.1007/s00466-017-1383-6 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193(23):2221–2237.  https://doi.org/10.1016/j.cma.2003.12.055 CrossRefzbMATHGoogle Scholar
  19. 19.
    Duan XB, Li FF, Qin XQ (2015) Adaptive mesh method for topology optimization of fluid flow. Appl Math Lett 44:40–44.  https://doi.org/10.1016/j.aml.2014.12.016 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dunning PD, Kim HA (2013) Robust topology optimization: minimization of expected and variance of compliance. AIAA J 51:2656–2664.  https://doi.org/10.2514/1.J052183 CrossRefGoogle Scholar
  21. 21.
    Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.  https://doi.org/10.2514/6.2009-2274
  22. 22.
    Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168:19–34.  https://doi.org/10.1016/S0045-7825(98)00106-6 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ghanem R, Red-Horse J (2017) Polynomial chaos: modeling, estimation, and approximation. Springer, Berlin, pp 521–551Google Scholar
  24. 24.
    Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach, 2nd edn. Dover, New YorkzbMATHGoogle Scholar
  25. 25.
    Guest JK, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198:116–124.  https://doi.org/10.1016/j.cma.2008.04.009 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hoshina TYS, Menezes IFM, Pereira A (2018) A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes. J Braz Soc Mech Sci Eng 40(7):348.  https://doi.org/10.1007/s40430-018-1267-5 CrossRefGoogle Scholar
  27. 27.
    Jalalpour M, Guest JK, Igusa T (2013) Reliability-based topology optimization of trusses with stochastic stiffness. Struct Saf 43:41–49.  https://doi.org/10.1016/j.strusafe.2013.02.003 CrossRefGoogle Scholar
  28. 28.
    Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147.  https://doi.org/10.1016/j.cma.2017.01.019 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kim NH, Wang H, Queipo NV (2006) Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA J 44:1112–1116.  https://doi.org/10.2514/1.13011 CrossRefGoogle Scholar
  30. 30.
    Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods. Wiley, LondonCrossRefGoogle Scholar
  31. 31.
    Kundu A, Adhikari S, Friswell M (2014) Stochastic finite elements of discretely parameterized random systems on domains with boundary uncertainty. Int J Numer Methods Eng 100(3):183–221MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kundu A, Matthies H, Friswell M (2018) Probabilistic optimization of engineering system with prescribed target design in a reduced parameter space. Comput Methods Appl Mech Eng 337:281–304MathSciNetCrossRefGoogle Scholar
  33. 33.
    Luo Y, Niu Y, Li M, Kang Z (2017) A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures. Comput Mech 59:967–980.  https://doi.org/10.1007/s00466-017-1387-2 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Maître OPL, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, DordrechtCrossRefGoogle Scholar
  35. 35.
    Michell MCE (1904) LVIII. The limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8:589–597.  https://doi.org/10.1080/14786440409463229 CrossRefzbMATHGoogle Scholar
  36. 36.
    Nanthakumar SS, Valizadeh N, Park HS, Rabczuk T (2015) Surface effects on shape and topology optimization of nanostructures. Comput Mech 56:97–112.  https://doi.org/10.1007/s00466-015-1159-9 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nguyen-Xuan H (2017) A polytree-based adaptive polygonal finite element method for topology optimization. Int J Numer Methods Eng 110(10):972–1000.  https://doi.org/10.1002/nme.5448 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Park J, Sutradhar A, Shah JJ, Paulino GH (2018) Design of complex bone internal structure using topology optimization with perimeter control. Comput Biol Med.  https://doi.org/10.1016/j.compbiomed.2018.01.001 CrossRefGoogle Scholar
  39. 39.
    Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in polytop: stability and computational implementation. Struct Multidiscip Optim 54:1345–1364.  https://doi.org/10.1007/s00158-014-1182-z MathSciNetCrossRefGoogle Scholar
  40. 40.
    Perrin G, Soize C, Duhamel D, Funfschilling C (2013) Karhunen–Loève expansion revisited for vector-valued random fields: scaling, errors and optimal basis. J Comput Phys 242:607–622.  https://doi.org/10.1016/j.jcp.2013.02.036 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pettersson MP, Iaccarino G, Nordström J (2015) Polynomial chaos methods for hyperbolic partial differential equations: numerical techniques for fluid dynamics problems in the presence of uncertainties. Springer, BerlinCrossRefGoogle Scholar
  42. 42.
    Putek P, Pulch R, Bartel A, ter Maten EJW, Günther M, Gawrylczyk KM (2016) Shape and topology optimization of a permanent-magnet machine under uncertainties. J Math Ind 6:11.  https://doi.org/10.1186/s13362-016-0032-6 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Qizhi Q, Kang Z, Wang Y (2014) A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput Mech 54:629–644.  https://doi.org/10.1007/s00466-014-1011-7 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Richardson J, Filomeno Coelho R, Adriaenssens S (2016) A unified stochastic framework for robust topology optimization of continuum and truss-like structures. Eng Optim 48:334–350.  https://doi.org/10.1080/0305215X.2015.1011152 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Romero JS, Silva ECN (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Methods Appl Mech Eng 279:268–300.  https://doi.org/10.1016/j.cma.2014.06.029 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Rubinstein RY, Kroese DP (2016) Simulation and the Monte Carlo method, 3rd edn. Wiley, LondonCrossRefGoogle Scholar
  47. 47.
    Shin S, Samanlioglu F, Cho BR, Wiecek MM (2011) Computing trade-offs in robust design: perspectives of the mean squared error. Comput Ind Eng 60:248–255.  https://doi.org/10.1016/j.cie.2010.11.006 CrossRefGoogle Scholar
  48. 48.
    Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75.  https://doi.org/10.1007/BF01214002 CrossRefGoogle Scholar
  49. 49.
    Soize C (2013) Stochastic modeling of uncertainties in computational structural dynamics—recent theoretical advances. J Sound Vib 332:2379–2395.  https://doi.org/10.1016/j.jsv.2011.10.010 CrossRefGoogle Scholar
  50. 50.
    Soize C (2015) Polynomial chaos expansion of a multimodal random vector. SIAM/ASA J Uncertain Quantif 3:34–60.  https://doi.org/10.1137/140968495 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Soize C (2017) Uncertainty quantification: an accelerated course with advanced applications in computational engineering. Springer, BerlinCrossRefGoogle Scholar
  52. 52.
    Soize C, Desceliers C (2010) Computational aspects for constructing realizations of polynomial chaos in high dimension. SIAM J Sci Comput 32:2820–2831.  https://doi.org/10.1137/100787830 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26:395–410.  https://doi.org/10.1137/S1064827503424505 MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Soize C, Ghanem R (2017) Polynomial chaos representation of databases on manifolds. J Comput Phys 335:201–221.  https://doi.org/10.1016/j.jcp.2017.01.031 MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Spanos PD, Ghanem R (1989) Stochastic finite element expansion for random media. J Eng Mech 115:1035–1053.  https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035) CrossRefGoogle Scholar
  56. 56.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051.  https://doi.org/10.1016/j.cma.2008.11.007 CrossRefzbMATHGoogle Scholar
  57. 57.
    Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373.  https://doi.org/10.1002/nme.1620240207 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82:671–698.  https://doi.org/10.1002/nme.2763 CrossRefzbMATHGoogle Scholar
  59. 59.
    Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45:329–357.  https://doi.org/10.1007/s00158-011-0696-x MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Tootkaboni M, Asadpoure A, Guest JK (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204:263–275.  https://doi.org/10.1016/j.cma.2011.09.009 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Wu J, Gao J, Luo Z, Brown T (2016) Robust topology optimization for structures under interval uncertainty. Adv Eng Softw 96:36–48.  https://doi.org/10.1016/j.advengsoft.2016.05.002 CrossRefGoogle Scholar
  62. 62.
    Xia L, Da D, Yvonnet J (2018) Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Comput Methods Appl Mech Eng 332:234–254.  https://doi.org/10.1016/j.cma.2017.12.021 MathSciNetCrossRefGoogle Scholar
  63. 63.
    Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonCrossRefGoogle Scholar
  64. 64.
    Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24:619–644.  https://doi.org/10.1137/S1064827501387826 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Zhang W, Kang Z (2017) Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. Int J Numer Methods Eng 110:31–56.  https://doi.org/10.1002/nme.5344 MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Zhang XS, de Sturler E, Paulino GH (2017) Stochastic sampling for deterministic structural topology optimization with many load cases: density-based and ground structure approaches. Comput Methods Appl Mech Eng 325:463–487.  https://doi.org/10.1016/j.cma.2017.06.035 MathSciNetCrossRefGoogle Scholar
  67. 67.
    Zhang XS, Paulino GH, Ramos AS (2018) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182.  https://doi.org/10.1007/s00158-017-1768-3 MathSciNetCrossRefGoogle Scholar
  68. 68.
    Zhao J, Wang C (2014) Robust structural topology optimization under random field loading uncertainty. Struct Multidiscip Optim 50:517–522.  https://doi.org/10.1007/s00158-014-1119-6 MathSciNetCrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPontifical Catholic University of Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil
  2. 2.Nucleus of Modeling and Experimentation with Computers (NUMERICO)Universidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil

Personalised recommendations