Advertisement

Numerical experiments of ascending bubbles for fluid dynamic force calculations

  • Franco Barbi
  • Márcio Ricardo Pivello
  • Millena Martins Villar
  • Ricardo Serfaty
  • Alexandre Megiorin Roma
  • Aristeu da Silveira Neto
Technical Paper

Abstract

With the usage of a robust and efficient method, validated with literature data, numerical experiments were developed to analyze isolated rising bubbles and quantify fluid dynamic forces acting on them. An integral method is presented and used for the calculus, allowing the observation of the evolution of the total fluid dynamic force and the momentum rate of change in different types of rising bubbles. Drag coefficients were calculated and compared with literature correlations. Results showed that the present method is qualified to be applied for numerical experiments of isolated rising bubbles.

Keywords

Volume of fluid Adaptive mesh refinement Multiphase flow Bubble drag coefficient Fluid dynamic forces 

Notes

Acknowledgements

This work was sponsored by PETROBRAS (Cooperation Agreements No. 0050.0071368.11.9/4600344971) and CAPES.

References

  1. 1.
    Ascher UM, Ruuth SJ, Wetton BT (1997) Implicit-explicit methods for time-dependent pde’s. SIAM J Numer Anal 32:797–823CrossRefGoogle Scholar
  2. 2.
    Baltussen M, Kuipers J, Deen N (2017) Direct numerical simulation of effective drag in dense gas–liquid–solid three-phase flows. Chem Eng Sci 158:561–568CrossRefGoogle Scholar
  3. 3.
    Berger M, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82:64–84CrossRefGoogle Scholar
  4. 4.
    Berger MJ, Rigoutsos I (1991) An algorithm for hyperbolic partial differential equations. IEE Trans Syst Man Cybern 21:1278–1286CrossRefGoogle Scholar
  5. 5.
    Bhaga D, Weber ME (1981) Bubbles in viscous liquids: shapes, wakes and velocities. J Fluid Mech 105:61–85CrossRefGoogle Scholar
  6. 6.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dijkhuizen W, Roghair I, Annaland MVS, Kuipers J (2010) Dns of gas bubbles behaviour using an improved 3D front tracking model—drag force on isolated bubbles and comparison with experiments. Chem Eng Sci 65(4):1415–1426.  https://doi.org/10.1016/j.ces.2009.10.021 CrossRefGoogle Scholar
  8. 8.
    Fuster D, Bagué A, Boeck T, Moyne LL, Leboissetier A, Popinet S, Ray P, Scardovelli R, Zaleski S (2009) Simulation of primary atomization with an octree adaptive mesh refinement and vof method. Int J Multiph Flow 35(6):550–565.  https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014 CrossRefGoogle Scholar
  9. 9.
    Gueyffier D, Li J, Nadim A, Scardovelli S, Zaleski S (1999) Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152:423–456CrossRefGoogle Scholar
  10. 10.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefGoogle Scholar
  11. 11.
    Hua J, Lou J (2007) Numerical simulation of bubble rising in viscous liquid. J Comput Phys 222:769–795CrossRefGoogle Scholar
  12. 12.
    Lima RSD (2012) Desenvolvimento e implementação de malhas adaptativas bloco-estruturadas para computação paralela em mecânica dos fluidos. PhD thesis, Universidade Federal de Uberlândia, Uberlândia, MGGoogle Scholar
  13. 13.
    Lopez J, Hernandez J, Gomez P, Faura F (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comput Phys 195:718–742CrossRefGoogle Scholar
  14. 14.
    Mei R, Lawrence CJ, Klausner JF (1994) A note on the history force on a spherical bubble at finite reynolds number. Phys Fluids 6:418–420CrossRefGoogle Scholar
  15. 15.
    Milne RB (1995) An adaptive level set method. Technical report, Lawrence Berkeley Lab., CAGoogle Scholar
  16. 16.
    Nós RL (2007) Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo de fase. PhD thesis, Universidade de São Paulo, São PauloGoogle Scholar
  17. 17.
    Pivello MR (2012) A fully adaptive front-tracking method for the simulation of 3D two-phase flows. PhD thesis, Universidade Federal de Uberlândia, UberlândiaGoogle Scholar
  18. 18.
    Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866MathSciNetCrossRefGoogle Scholar
  19. 19.
    Roghair I, Baltussen M, Annaland MVS, Kuipers J (2013) Direct numerical simulations of the drag force of bi-disperse bubble swarms. Chem Eng Sci 95:48–53CrossRefGoogle Scholar
  20. 20.
    Roghair I, Lau Y, Deen N, Slagter H, Baltussen M, Annaland MVS, Kuipers J (2011) On the drag force of bubbles in bubble swarms at intermediate and high reynolds numbers. Chem Eng Sci 66(14):3204–3211.  https://doi.org/10.1016/j.ces.2011.02.030 CrossRefGoogle Scholar
  21. 21.
    Roma AM (1996) A multilevel self adaptive version of the immersed boundary method. PhD thesis, New York UniversityGoogle Scholar
  22. 22.
    Scardovelli R, Zaleski S (2003) Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection. Int J Numer Methods Fluids 41(3):251–274CrossRefGoogle Scholar
  23. 23.
    Shirani E, Ashgriz N, Mostaghimi J (2005) Interface pressure calculation based on conservation of momentum for front capturing methods. J Comput Phys 203(1):154–175CrossRefGoogle Scholar
  24. 24.
    Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148(1):81–124.  https://doi.org/10.1006/jcph.1998.6106. http://www.sciencedirect.com/science/article/pii/S002199919896106X MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions in incompressible two-phase flow. J Comput Phys 114:146–159CrossRefGoogle Scholar
  26. 26.
    Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubble under normal and micro gravity conditions. JSME Int J Ser B 41:472–479CrossRefGoogle Scholar
  27. 27.
    Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas–liquid multiphase flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. 28.
    Villar MM (2007) Análise Numérica Detalhada de Escoamentos Multifásicos Bidimensionais. PhD thesis, Universidade Federal de UberlândiaGoogle Scholar
  29. 29.
    Wang Z, Yang J, Koo B, Stern F (2008) A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves. Int J Multiph Flow 293:112–130Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Franco Barbi
    • 1
  • Márcio Ricardo Pivello
    • 1
  • Millena Martins Villar
    • 1
  • Ricardo Serfaty
    • 2
  • Alexandre Megiorin Roma
    • 3
  • Aristeu da Silveira Neto
    • 1
  1. 1.Faculdade de Engenharia MecânicaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Centro de de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de MelloRio de JaneiroBrazil
  3. 3.Instituto de Matemática e Estatística da Universidade de São PauloSão PauloBrazil

Personalised recommendations