Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding

  • Natália Lopes do ValeEmail author
  • Edwar Andrés Torres
  • Tiago Felipe de Abreu Santos
  • Severino Leopoldino Urtiga Filho
  • Jorge F. dos Santos
Technical Paper


Butt joints of AA2024-T351, with 6 mm thickness, were friction-stir-welded. The objective was to investigate the effects of the energy input on the microstructure and mechanical properties of the joints. The welded joints were tested employing a Mo–Va tool, with shoulder and pin diameter of 15 and 6 mm, respectively. The parameters were selected according to visual inspection of the welds, bending test, and microstructural analysis. Constant values of rotational speed and axial force were employed: 1000 rpm and 13 kN, respectively. The welding speed varied from 3 to 6 mm/s. Temperature measurements were performed along the welding process, analysis by optical microscope, microhardness, and bending tests. The process parameters selected resulted in butt joints with good characteristics, no microvoids, and full penetration. The base metal presented mainly S-type compounds, while in the HAZ thickening and loss of coherence of this precipitates are found. A more refined microstructure was found in the stir zone, based on the CDRX mechanism, with evidences of GDRX in the SZ/TMAZ (AS). As far away from the weld the indentation line is, lower is the hardness of the stir zone. The joints presented a similar increase in the mechanical resistance, with loss in ductility.


Welding parameter Microstructure Thermal cycle 



The authors gratefully acknowledge Petrobras/ANP, FINEP, CNPq, FACEPE, COMPOLAB. The work was developed in the Joining Technology Group from HZG.


  1. 1.
    ASTM E190-92 (2008) Standard test method for guided bend test for ductility of welds. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USAGoogle Scholar
  2. 2.
    ASTM E3-01 (2008) Standard practice for preparation of metallographic specimens. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USAGoogle Scholar
  3. 3.
    ASTM E384-10 (2008) Standard test method for knoop and vickers hardness of materials. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United StatesGoogle Scholar
  4. 4.
    Bagaryatsky YA (1952) Structural changes on aging Al–Cu–Mg alloys. Dokl Akad SSSR 87(3):397–559Google Scholar
  5. 5.
    Benavides S, Li Y, Murr L, Brown D, Mcclure J (1999) Low-temperature friction-stir welding of 2024 aluminum. Scr Mater 41(8):809–815CrossRefGoogle Scholar
  6. 6.
    Boag A, Hughes AE, Wilson NC, Torpy A, Macrae CM, Glenn AM, Muster TH (2006) How complex is the microstructure of AA2024-T3. Corros Sci 51(8):1565–1568CrossRefGoogle Scholar
  7. 7.
    Bonome EC, Carletti CB, Alcantara NG, dos Santos JF (2006) Soldagem por Fricção Linear—FSW Aplicada em Tailored Blanks. Soldag Insp 11(2):79–84Google Scholar
  8. 8.
    Bousquet E, Poulon-Quintin A, Puiggalu M, Devos O, Touzet M (2011) Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corros Sci 53(9):3026–3034CrossRefGoogle Scholar
  9. 9.
    Buffa G, Fratini L, Shivputi R (2007) CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: analytical approaches. J Mater Process Technol 191(1):356–359CrossRefGoogle Scholar
  10. 10.
    Bussu G, Irving PE (2003) The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int J Fatigue 25(1):77–88CrossRefGoogle Scholar
  11. 11.
    Canaday CT, Moore MA, Tang W, Reynolds AP (2013) Through thickness property variations in a thick plate AA7050 friction stir welded joint. Mater Sci Eng A 559:678–682CrossRefGoogle Scholar
  12. 12.
    Capelari TV, Mazzaferro JAE (2009) Avaliação da geometria de ferramenta e parâmetros do processo FSW na soldagem da liga de alumínio AA5052. Sold Insp São Paulo 14(3):215–227CrossRefGoogle Scholar
  13. 13.
    Carlone P, Palazzo GS (2013) Influence of process parameters on microstructure and mechanical properties in aa2024-t3 friction stir welding. Metallogr Microstruct Anal 2:213–222CrossRefGoogle Scholar
  14. 14.
    Cavaliere P, Nobile R, Panella FW, Squillace A (2006) Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding. Int J Mach Tools Manuf 46:588–594CrossRefGoogle Scholar
  15. 15.
    Chen J, Zhen L, Yang S, Shao W, Dai S (2009) Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Mater Sci Eng A 500(1):34–42CrossRefGoogle Scholar
  16. 16.
    Chen Y, Ding H, Li JZ, Zhazo J, Fu MJ, Li XH (2015) Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy. Trans Nonferrous Metals Soc China 25:2524–2532CrossRefGoogle Scholar
  17. 17.
    Chowdhury SM, Chen DL, Bhole SD, Cao X (2010) Tensile properties of a friction stir welded magnesium alloy: effect of pin tool thread orientation and weld pitch. Mater Sci Eng A 527(21–22):6064–6075CrossRefGoogle Scholar
  18. 18.
    Crawford R, Cook GE, Strauss AM, Hartman DA, Stremler MA (2006) Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding. Sci Technol Weld Join 11(6):657–665CrossRefGoogle Scholar
  19. 19.
    Da Silda AAM, Arruti E, Janeiro G, Aldanondo E, Alvarez P, Echeverria A (2011) Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater Des 32:2021–2027CrossRefGoogle Scholar
  20. 20.
    Davis JR (ed) (1999) Corrosion of aluminum and aluminum alloys. ASM International, Materials ParkGoogle Scholar
  21. 21.
    Dixit V, Mishra RS, Lederich RJ, Talwar R (2007) Effect of initial temper on mechanical properties of friction stir welded Al-2024 alloy. Sci Technol Weld Join 12(4):334–340CrossRefGoogle Scholar
  22. 22.
    Dixit V, Mishra RS, Lederich RJ, Talwar R (2009) Influence of process parameters on microstructural evolution and mechanical properties in friction stirred Al-2024 (T3) alloy. Sci Technol Weld Join 14(4):346–355CrossRefGoogle Scholar
  23. 23.
    Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, Mcnelley TR, Mcqueen HJ, Rollett AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238:219–274CrossRefGoogle Scholar
  24. 24.
    Dos Santos MR, Kuri MP, Alcantara NG, dos Santos JF (2005) Sobreposição e cruzamento de soldas por fricção linear- FSW. Soldag Insp 10(4):155–163Google Scholar
  25. 25.
    Ebrahimi GR, Zarei-Hanzaki A, Haghshenas M, Arabshahi H (2008) The effect of heat treatment on hot deformation behaviour of Al 2024. J Mater Process Technol 206(1):25–29CrossRefGoogle Scholar
  26. 26.
    Fonda RW, Bingert JF (2004) Microstructural evolution in the heat-affected zone of a friction stir weld. Metall Mater Trans Part A 35:1487–1499CrossRefGoogle Scholar
  27. 27.
    Franchim AS, Fernandez FF, Travessa DN (2011) Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet. Mater Des 32:4684–4688CrossRefGoogle Scholar
  28. 28.
    Fratini L, Buffa G (2005) CDRX modelling in friction stir welding of aluminium alloys. Int J Mach Tools Manuf 45(10):1188–1194CrossRefGoogle Scholar
  29. 29.
    Fratini L, Pasta S, Reynolds AP (2009) Fatigue crack growth in 2024-T351 friction stir welded joints: longitudinal residual stress and microstructural effects. Int J Fatigue 31(3):495–500CrossRefGoogle Scholar
  30. 30.
    Genevois C, Deschamps A, Denquin A, Doisneau-Cottignies B (2005) Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater 53(8):2447–2458CrossRefGoogle Scholar
  31. 31.
    Gerlich A, Yamamoto M, North TH (2007) Local melting and cracking in Al 7075-T6 and Al 2024-T3 friction stir spot welds. Sci Technol Weld Join 12(6):472–480CrossRefGoogle Scholar
  32. 32.
    Gerlich AP, Shibayanagi T (2011) Liquid film formation and cracking during friction stir welding. Sci Technol Weld Join 16(4):295–299CrossRefGoogle Scholar
  33. 33.
    Gourdet S, Montheillet F (2000) An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng 283:274–288CrossRefGoogle Scholar
  34. 34.
    Hashimoto T, Zhang X, Zhou X, Skeldon P, Haigh SJ, Thompson GE (2016) Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros Sci 103:157–164CrossRefGoogle Scholar
  35. 35.
    Hermenegildo TFC, Santos TFA, Torres EA, Afonso CRM, Ramirez AJ (2018) Microstructural evolution of HSLA ISO 3183 X80M (API 5L X80) friction stir welded joints. Int Metal Mater. CrossRefGoogle Scholar
  36. 36.
    Huang C, Kou S (2004) Liquation cracking in full-penetration Al–Cu welds. Weld J 83(2):50-SGoogle Scholar
  37. 37.
    Huang C, Cao G, Kou S (2013) Liquation cracking in partial penetration aluminium welds: assessing tendencies to liquate, crack and backfill. Sci Technol Weld Join 9:149–157CrossRefGoogle Scholar
  38. 38.
    Huda Z, Taib NI, Zaharinie T (2009) Characterization of 2024-T3: an aerospace aluminum alloy. Mater Chem Phys 113(2):515–517CrossRefGoogle Scholar
  39. 39.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford, p 628pGoogle Scholar
  40. 40.
    Hussain AK, Quadri SAP (2010) Evaluation of parameters of friction stir welding for aluminium AA6351 alloy. Int J Eng Sci Technol 2(10):5977–5984Google Scholar
  41. 41.
    Jariyaboon M, Davenport AJ, Ambat R, Connolly BJ, Williams SW, Price DA (2007) The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351. Corros Sci 49(2):877–909CrossRefGoogle Scholar
  42. 42.
    Jones MJ, Heurtier P, Desrayaud C, Montheille F, Allehaux D, Driver JH (2005) Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scr Mater 52:693–697CrossRefGoogle Scholar
  43. 43.
    Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174CrossRefGoogle Scholar
  44. 44.
    Khodir SA, Shibayanagi T, Naka M (2006) Control of hardness distribution in friction stir welded AA2024-T3 aluminum alloy. Mater Trans 47(6):1560–1567CrossRefGoogle Scholar
  45. 45.
    Krishnan KN (2002) On the formation of onion rings in friction stir welds. Mater Sci Eng A 327(2):246–251MathSciNetCrossRefGoogle Scholar
  46. 46.
    Liu H, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J Mater Sci Lett 22(15):1061–1063CrossRefGoogle Scholar
  47. 47.
    Macedo MLK (2011) Caracterização de Depósitos Realizados pelo Processo de Deposição por Fricção em Chapas de Aço de Alto Carbono. 148 f. Tese (Doutorado em Engenharia de Minas, Metalúrgica e de Materiais)—Universidade Federal do Rio Grande do Sul. Porto AlegreGoogle Scholar
  48. 48.
    Marceau RKW, Sha G, Ferragut R, Dupasquier A, Ringer SP (2010) Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing. Acta Mater 58(15):4923–4939CrossRefGoogle Scholar
  49. 49.
    Mcnelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354CrossRefGoogle Scholar
  50. 50.
    Mcqueen HJ (2004) Development of dynamic recrystallization theory. Mater Sci Eng A 387:203–208CrossRefGoogle Scholar
  51. 51.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRefGoogle Scholar
  52. 52.
    Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM International, OhioGoogle Scholar
  53. 53.
    Moghadam DG, Farhangdoost K, Nejad RM (2016) Microstructure and residual stress distributions under the influence of welding speed in friction stir welded 2024 aluminum alloy. Metall Mater Trans B 47(3):2048–2062CrossRefGoogle Scholar
  54. 54.
    Paidar M, Sadegui F, Najafi H, Khodabandeh AR (2015) Effect of pin and shoulder geometry on stir zone and mechanical properties of friction stir spot-welded aluminum alloy 2024-T3 sheets. J Eng Mater Technol 137(3):031004Google Scholar
  55. 55.
    Pao PS, Gill SJ, Fend CR, Sankaran KK (2001) Corrosion-fatigue crack growth in friction stir welded Al 7050. Scr Mater 45:605–612CrossRefGoogle Scholar
  56. 56.
    Rajakumar S, Balasubramanian V (2012) Establishing relationships between mechanical properties of aluminum alloys and optimized friction stir welding process parameters. Mater Des 40:17–35CrossRefGoogle Scholar
  57. 57.
    Reynolds AP, Tang W, Khandkar Z, Khan JA, Lindner K (2005) Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds. Sci Technol Weld Join 10(2):190–199CrossRefGoogle Scholar
  58. 58.
    Ruzek R, Kadlec M, Novakova L (2015) Influence of the kissing bond defect on the fatigue life in friction stir welds of 2024 aluminium alloy. Ciência Tecnol Mater 27(2):92–99CrossRefGoogle Scholar
  59. 59.
    Santos TFA, Hermenegildo TFC, Afonso CRM, Marinho RR, Paes MTP, Ramirez AJ (2010) Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Eng Fract Mech 77(15):2937–2945CrossRefGoogle Scholar
  60. 60.
    Santos TFA, Torres EA, Ramirez AJ (2016) Friction stir welding of duplex stainless steels. Weld Int 32(2):103–111CrossRefGoogle Scholar
  61. 61.
    Santos TFA, Torres EA, Hermenegildo TFC, Ramirez AJ (2014) Development of ceramic backing for friction stir welding and processing. Weld Int 30(5):338–347CrossRefGoogle Scholar
  62. 62.
    Sato YS, Kokawa H, Enomoto M, Jogan S (1999) Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A 30A:2429CrossRefGoogle Scholar
  63. 63.
    Schmidt H, Hattel J (2005) Modeling heat flow around tool probe in friction stir welding. Sci Technol Weld Join 10(2):176–186CrossRefGoogle Scholar
  64. 64.
    Sha G, Marceau RKW, Gao X, Muddle BC, Ringer SP (2011) Nanostructure of aluminium alloy 2024: segregation, clustering and precipitation processes. Acta Mater 59(4):1659–1670CrossRefGoogle Scholar
  65. 65.
    Sheikhi S, Santos JF (2007) Effect of process parameter on mechanical properties of friction stir welded tailored blanks from aluminum alloy 6181-T4. Sci Technol Weld Join 12(4):370–375CrossRefGoogle Scholar
  66. 66.
    Smith CB, Noruk JS, Bendzsak GB, North TH, Hinrichs JF, Heideman RJ, Smith AO (1999) Heat and material flow modeling of the friction stir welding process. In: 9th international conference on computer technology in welding, MI, USA, pp 15–18Google Scholar
  67. 67.
    Smith IJ, Lord DD (2007) FSW patents—a stirring story (No. 2007-01-1707). SAE technical paperGoogle Scholar
  68. 68.
    Squillace A, De Fenzo A, Giorleo G, Belluci F (2004) A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. J Mater Process Technol 152(1):97–105CrossRefGoogle Scholar
  69. 69.
    Su J-Q, Nelson W, Mishra R, Mahoney M (2002) Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 51:713–729CrossRefGoogle Scholar
  70. 70.
    Su J-Q, Nelson TW, Sterling CJ (2005) Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A 405:277–286CrossRefGoogle Scholar
  71. 71.
    Sutton MA, Reynolds AP, Yang B, Taylor R (2003) Mode I fracture and microstructure for 2024-T3 friction stir welds. Mater Sci Eng A 354:6–16CrossRefGoogle Scholar
  72. 72.
    Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A 323(1):160–166CrossRefGoogle Scholar
  73. 73.
    Torres EA (2012) Soldagem por atrito com pino não consumível de chapas finas do aço 1020 e da liga de alumínio 6063-75. 86 f. Tese (Doutorado em Engenharia Mecânica)—Universidade Estadual de Campinas. CampinasGoogle Scholar
  74. 74.
    Torres EA, Ramirez AJ (2011) União de juntas dissimilares alumínio-aço de chapas finas pelo processo de soldagem por atrito com pino não consumível (SAPNC). Soldag Insp 16(3):265–273CrossRefGoogle Scholar
  75. 75.
    Torres EA, Ramirez AJ (2013) Efeito dos Parâmetros de Processo na Obtenção e na Microestrutura de Juntas Alumínio-Aço Realizadas Mediante Soldagem por Atrito com Pino não Consumível (SAPNC). Soldag Insp 18:245–256CrossRefGoogle Scholar
  76. 76.
    Trimble D, Monaghan J, O’Donell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61(1):9–12CrossRefGoogle Scholar
  77. 77.
    Vilaça P, Quintino L, dos Santos JF, Zettler R, Sheikhi S (2007) Quality assessment of friction stir welding joints via an analytical thermal model. Mater Sci Eng A 445–446:501–508CrossRefGoogle Scholar
  78. 78.
    Wei LY, Nelson TW (2011) Correlation of microstructures and process variables in FSW HSLA-65 Steel. Weld J 90:95–101Google Scholar
  79. 79.
    Yang B, Yan J, Sutton MA, Reynolds AP (2004) Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: part I. Metallurgical studies. Mater Sci Eng A 364(1):55–65CrossRefGoogle Scholar
  80. 80.
    Zhang Z, Xiao BL, Ma ZY (2014) Hardness recovery mechanism in the heat-affected zone during long-term natural aging and its influence on the mechanical properties and fracture behavior of friction-stir-welded 2024Al–T351 joints. Acta Mater 73:227–239CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Department of Mechanical EngineeringUniversidad de AntioquiaMedellínColombia
  3. 3.Helmholtz-Zentrum Geesthacht GmbH, Institute of Materials Research, Solid-State Joining ProcessesGeesthachtGermany

Personalised recommendations