Advertisement

Energy and environmental analysis of a natural gas pressure reduction station equipped with turboexpander, solar collector, and storage tank

  • Mahdi Moghimi
  • Morteza Hosseinnia
  • Mohammadali Emadi
Technical Paper
  • 56 Downloads

Abstract

The pressure of natural gas in the transmission pipelines is high, and it is not suitable for urban consumptions. Therefore, it should be decreased to a certain lower amount in the pressure reduction stations near the urban area by the pressure reducing valves. Recently, for recovering the energy losses in these valves and generating electricity, turboexpanders are utilized. However, the pressure decrease in the turboexpander results in a sudden decrease in temperature, which leads to the formation of hydrates. To prevent the hydrate formation, preheating is required, which is conventionally done by a line heater. In this study, the required energy for preheating the natural gas entering the station is supplied from the solar energy and an auxiliary line heater for a case study of Mashhad city (Iran). Parabolic trough thermal collectors are used for the absorption of the solar radiant energy. The collector was modeled through one-dimensional implicit finite-difference method and using discretization of energy balance equation between the working fluid, the absorbent pipe, and the glass envelope. The reduction in natural gas consumption and the produced CO2 emission are computed for the pressure reduction station with a thermal collector and a storage tank. The results reveal that the presence of the thermal collector and the storage tank reduces the consumption of fuel and consequently the generation of pollutant about 90%.

Keywords

Pressure reduction station Turboexpander Solar radiation Parabolic trough collector Storage tank 

List of symbols

A

Area (m2)

Cp

Heat capacity (kJ/kg k)

Ct

Correction of the Earth–Sun distance

D

Diameter (m)

Dh

Diffuse flux on a horizontal surface (W/m2)

f

Friction coefficient

Gh

Global flux on a horizontal surface (W/m2)

Gr

Grashof number

h

Heat transfer coefficients (W/m2)

hs

Height of the Sun (°)

I0

Solar constant (W/m2)

Ih

Direct flux on a horizontal surface (W/m2)

K

Incident angle modifier

k

Thermal conductivity (W/m.K)

L

Absorber length (m)

LHV

Lower heating value of fuel (kJ/kg)

\( \dot{m}_{ } \)

Mass flow rate (kg/s)

n

Number of days

Nu

Nusselt number

P

Pressure (bar)

Pr

Prandtl number

Q

Heat flow (W)

Ra

Rayleigh number

Re

Reynolds number

T

Temperature (°C or K)

Tl

Local time

Tsv

Actual time of the Sun

U

Total heat transfer coefficient (W/m2 K)

W

Collector width (m)

Greek letters

α

Absorptance factor

Γ

Atmospheric turbidity factor

δ

Declination (rad)

ε

Emittance

ηh

Thermal efficiency of line heater

ρ

Density (kg/m3)

ρ0

Reflected surface reflectivity

σ

Stefan–Boltzmann constant

γ

Shape factor

φ

Latitude (rad)

ω

Hour angle (°)

Subscripts

a

Ambient

ab

Absorber pipe

air

Air

c

Convection

cst

Cold storage tank

diff

Diffusion

ext

Exterior

f

Fluid

g

Glass envelope

heater

Heater

hst

Hot tank storage

hdy

Hydrate

in

Inlet

int

Interior

l

Lost heat

Lam

Laminar

NG

Natural gas

out

Outlet

r

Radiation

skt

Sky

TE

Turboexpander

Turb

Turbulent

u

Useful value of previous instant

References

  1. 1.
    Neseli MA, Ozgener O, Ozgener L (2015) Energy and exergy analysis of electricity generation from natural gas pressure reducing stations. Energy Convers Manag 93(Supplement C):109–120.  https://doi.org/10.1016/j.enconman.2015.01.011 CrossRefGoogle Scholar
  2. 2.
    Zabihi A, Taghizadeh M (2016) Feasibility study on energy recovery at Sari-Akand city gate station using turboexpander. J Nat Gas Sci Eng 35:152–159.  https://doi.org/10.1016/j.jngse.2016.08.054 CrossRefGoogle Scholar
  3. 3.
    Borelli D, Devia F, Lo Cascio E, Schenone C (2018) Energy recovery from natural gas pressure reduction stations: integration with low temperature heat sources. Energy Convers Manag 159:274–283.  https://doi.org/10.1016/j.enconman.2017.12.084 CrossRefGoogle Scholar
  4. 4.
    Alparslan Neseli M, Ozgener O, Ozgener L (2017) Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): an application. Renew Sustain Energy Rev 77(Supplement C):80–88.  https://doi.org/10.1016/j.rser.2017.03.133 CrossRefGoogle Scholar
  5. 5.
    Sanaye S, Mohammadi Nasab A (2012) Modeling and optimizing a CHP system for natural gas pressure reduction plant. Energy 40(1):358–369.  https://doi.org/10.1016/j.energy.2012.01.060 CrossRefGoogle Scholar
  6. 6.
    Badami M, Modica S, Portoraro A (2017) A biofuel-based cogeneration plant in a natural gas expansion system: an energetic and economic assessment. Appl Thermal Eng 118(Supplement C):52–61.  https://doi.org/10.1016/j.applthermaleng.2017.02.062 CrossRefGoogle Scholar
  7. 7.
    Arabkoohsar A, Gharahchomaghloo Z, Farzaneh-Gord M, Koury RNN, Deymi-Dashtebayaz M (2017) An energetic and economic analysis of power productive gas expansion stations for employing combined heat and power. Energy 133:737–748.  https://doi.org/10.1016/j.energy.2017.05.163 CrossRefGoogle Scholar
  8. 8.
    Soltan ST, Elshahed MA, Elsobki MS (2017) Recovering lost power in natural gas pressure reduction stations using hybrid turbo expander and fuel cell systems. In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 19–21 Dec. 2017. pp 681–986.  https://doi.org/10.1109/mepcon.2017.8301300
  9. 9.
    Arabkoohsar A, Farzaneh-Gord M, Deymi-Dashtebayaz M, Machado L, Koury RNN (2015) A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set. Renew Energy 81(Supplement C):239–250.  https://doi.org/10.1016/j.renene.2015.03.043 CrossRefGoogle Scholar
  10. 10.
    Farzaneh-Gord M, Arabkoohsar A, Deymi Dasht-bayaz M, Machado L, Koury RNN (2014) Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renew Energy 72(Supplement C):258–270.  https://doi.org/10.1016/j.renene.2014.07.019 CrossRefGoogle Scholar
  11. 11.
    Ghezelbash R, Farzaneh-Gord M, Sadi M (2016) Performance assessment of vortex tube and vertical ground heat exchanger in reducing fuel consumption of conventional pressure drop stations. Appl Thermal Eng 102(Supplement C):213–226.  https://doi.org/10.1016/j.applthermaleng.2016.03.110 CrossRefGoogle Scholar
  12. 12.
    Farzaneh-Gord M, Ghezelbash R, Sadi M, Moghadam AJ (2016) Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: energy, economic and CO2 emission assessment. Energy 112(Supplement C):998–1014.  https://doi.org/10.1016/j.energy.2016.06.100 CrossRefGoogle Scholar
  13. 13.
    Ghezelbash R, Farzaneh-Gord M, Behi H, Sadi M, Khorramabady HS (2015) Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump. Energy 93:2503–2517.  https://doi.org/10.1016/j.energy.2015.10.101 CrossRefGoogle Scholar
  14. 14.
    Farzaneh-Gord M, Ghezelbash R, Arabkoohsar A, Pilevari L, Machado L, Koury RNN (2015) Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption. Energy 83(Supplement C):164–176.  https://doi.org/10.1016/j.energy.2015.02.093 CrossRefGoogle Scholar
  15. 15.
    Arabkoohsar A, Farzaneh-Gord M, Ghezelbash R, Koury RN (2017) Energy consumption pattern modification in greenhouses by a hybrid solar–geothermal heating system. J Braz Soc Mech Sci Eng 39(2):631–643CrossRefGoogle Scholar
  16. 16.
    Shekarchian M, Zarifi F, Moghavvemi M, Motasemi F, Mahlia TMI (2013) Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques. Energy Convers Manag 71(Supplement C):51–61.  https://doi.org/10.1016/j.enconman.2013.03.008 CrossRefGoogle Scholar
  17. 17.
    El Mghouchi Y, El Bouardi A, Choulli Z, Ajzoul T (2014) New model to estimate and evaluate the solar radiation. Int J Sustain Built Environ 3(2):225–234.  https://doi.org/10.1016/j.ijsbe.2014.11.001 CrossRefGoogle Scholar
  18. 18.
    Cooper PI (1969) The absorption of radiation in solar stills. Sol Energy 12(3):333–346.  https://doi.org/10.1016/0038-092X(69)90047-4 CrossRefGoogle Scholar
  19. 19.
    Strobel C, Moura LM, Mariani VC (2016) Radiative heat transfer considering the effect of multiple reflections in greenhouse structures. J Braz Soc Mech Sci Eng 38(4):1325–1331CrossRefGoogle Scholar
  20. 20.
    Churchill SW, Chu HHS (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf 18(9):1049–1053.  https://doi.org/10.1016/0017-9310(75)90222-7 CrossRefGoogle Scholar
  21. 21.
    García-Valladares O, Velázquez N (2009) Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers. Int J Heat Mass Transf 52(3):597–609.  https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.004 CrossRefzbMATHGoogle Scholar
  22. 22.
    Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Kalogirou SA (2012) A detailed thermal model of a parabolic trough collector receiver. Energy 48(1):298–306.  https://doi.org/10.1016/j.energy.2012.06.023 CrossRefGoogle Scholar
  24. 24.
    Gnielinski V (2013) On heat transfer in tubes. Int J Heat Mass Transfer 63(Supplement C):134–140.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.015 CrossRefGoogle Scholar
  25. 25.
    Ya C (2006) Heat and mass transfer: a practical approach, 3rd edn. McGraw Hill Book Company, New YorkGoogle Scholar
  26. 26.
    Kakac S, Shah R, Aung W (1987) Handbook of single-phase convective heat transfer. Wiley, New YorkGoogle Scholar
  27. 27.
    Marif Y, Benmoussa H, Bouguettaia H, Belhadj MM, Zerrouki M (2014) Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region. Energy Convers Manag 85(Supplement C):521–529.  https://doi.org/10.1016/j.enconman.2014.06.002 CrossRefGoogle Scholar
  28. 28.
    Al-Sulaiman FA, Hamdullahpur F, Dincer I (2012) Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production. Renew Energy 48(Supplement C):161–172.  https://doi.org/10.1016/j.renene.2012.04.034 CrossRefGoogle Scholar
  29. 29.
    He Y-L, Xiao J, Cheng Z-D, Tao Y-B (2011) A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy 36(3):976–985.  https://doi.org/10.1016/j.renene.2010.07.017 CrossRefGoogle Scholar
  30. 30.
    Zare V, Moalemian A (2017) Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: energy, exergy and economic analyses. Energy Convers Manag 151(Supplement C):681–692.  https://doi.org/10.1016/j.enconman.2017.09.028 CrossRefGoogle Scholar
  31. 31.
    Alamdari P, Nematollahi O, Alemrajabi AA (2013) Solar energy potentials in Iran: a review. Renew Sustain Energy Rev 21(Supplement C):778–788.  https://doi.org/10.1016/j.rser.2012.12.052 CrossRefGoogle Scholar
  32. 32.
    Ouagued M, Khellaf A, Loukarfi L (2013) Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils. Energy Convers Manag 75(Supplement C):191–201.  https://doi.org/10.1016/j.enconman.2013.06.011 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations