Advertisement

Physicochemical and thermal characteristics of sugarcane straw and its cellulignin

  • Eliana Vieira Canettieri
  • Vinícius Pereira da Silva
  • Turíbio Gomes Soares Neto
  • Andrés Felipe Hernández-Pérez
  • Debora Danielle Virgínio da Silva
  • Kelly Johana Dussán
  • Maria das Graças Almeida Felipe
  • João Andrade de CarvalhoJr.
Technical Paper

Abstract

Combustion of biomass is considered to be a source of atmospheric pollution and, therefore, is one of the important sources of CO2 emission. This paper discusses the burning of sugarcane straw and its cellulignin in laboratory tests to determine the characteristics and emission factors, of this combustion process. Elemental, chemical composition and thermogravimetric analyses were performed for both samples. Carbon contents for sugarcane straw and its cellulignin were estimated, and the values found were 45.69% and 44.28%, respectively. Higher heating values (HHV) were determined by experimental methods with a calorimetric bomb and were estimated by theoretical equations. The best results were obtained when only the lignin’s content was considered. During the experimental tests to determine HHVs, cellulignin did not burn completely, while straw burned completely. This could be because cellulignin contains more ashes, resulting in more residual ash after burning. Pollutant emission of CO2, CO, NO and UHC was evaluated in the flaming and smoldering combustion phases. NO concentrations were not presented because they were less than 10 ppm. The average theoretical and experimental emission factors for CO2 were analyzed. CO2 emissions factors found for sugarcane straw and their cellulignin were 1316 ± 83.6 and 1275 ± 105 g kg−1 of dry burned biomass, respectively. The evaluated parameters are useful to incorporate these materials into a future biorefinery.

Keywords

Biomass Emissions factor Thermochemical conversion Biorefinery Energy 

Notes

Acknowledgements

The authors acknowledge the financial support by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), Brazil, through processes 2013/27142-0 and 2013/04441-1.

References

  1. 1.
    Yan W, Perez S, Sheng K (2017) Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel 196:473–480CrossRefGoogle Scholar
  2. 2.
    Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) Review article. An overview of the chemical composition of biomass. Fuel 89:913–933CrossRefGoogle Scholar
  3. 3.
    Peduzzi E, Boissonnet G, Maréchal F (2016) Biomass modelling: estimating thermodynamic properties from the elemental composition. Fuel 181:207–217CrossRefGoogle Scholar
  4. 4.
    Amaral SS, Carvalho JA Jr, Costa MAM, Soares Neto TG, Dellani R, Leite LHS (2014) Comparative study for hardwood and softwood forest biomass: characterization, combustion phases and gas and particulate matter. Biores Technol 164:55–63CrossRefGoogle Scholar
  5. 5.
    Ren X, Sun R, Meng X, Vorobiev N, Schiemann M, Levendis YA (2017) Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel 188:310–323CrossRefGoogle Scholar
  6. 6.
    CONAB—Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: Cana-de-açúcar. v.4—Safra 2017/2018, N.1. Primeiro Levantamento. Brasilia. 1–57, abril 2017. ISSN: 2318-7921Google Scholar
  7. 7.
    Santos FA, Queiroz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas CS, Soares FEF (2014) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à produção de etanol celulósico. Quim Nova 37(1):56–62CrossRefGoogle Scholar
  8. 8.
    Ripoli TCC, Molina WF Jr, Ripoli MLC (2000) Energy potential of sugarcane biomass in Brazil. Sci Agric 57(4):677–681CrossRefGoogle Scholar
  9. 9.
    Carvalho DJ, Veiga JPS, Bizzo WA (2017) Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation. Energy 119:178–187CrossRefGoogle Scholar
  10. 10.
    Ronquim CC (2010) Queimada na colheita de cana-de-açúcar: impactos ambientais, sociais e econômicos. Campinas: Embrapa Monitoramento por Satélite. Documentos 77. ISSN 0103-78110Google Scholar
  11. 11.
    CEMIG—Companhia Energética de Minas Gerais (2012) Alternativas Energéticas: uma visão CEMIG. CEMIG, Belo HorizonteGoogle Scholar
  12. 12.
    ANEEL—Agência Nacional de Energia Elétrica (2008) Atlas de energia elétrica do Brasil/Agência Nacional de Energia Elétrica. 3a. ed., Brasília: ANEEL. ISBN: 978-85-87491-10-7Google Scholar
  13. 13.
    Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRefGoogle Scholar
  14. 14.
    Dias MOS, Junqueira TL, Rossel CEV, Filho RM, Bonomi A (2013) Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Process Technol 109:84–89CrossRefGoogle Scholar
  15. 15.
    Leal MRLV, Scarpare FV, Galdos MV, Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19CrossRefGoogle Scholar
  16. 16.
    Agostinho F, Ortega E (2013) Energetic-environmental assessment of a scenario for Brazilian cellulosic ethanol. J Clean Prod 47:474–489CrossRefGoogle Scholar
  17. 17.
    Hernández-Pérez AF, Arruda PV, Felipe MGA (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47:489–496CrossRefGoogle Scholar
  18. 18.
    Hernández-Pérez AF, Costa IAL, Silva DDV, Dussán KJ, Villela TR, Canettieri EV, Carvalho JA Jr, Soares Neto TG, Felipe MGA (2016) Biochemical conversion of sugarcane straw hemicellulosic hydrolysate supplemented with co-substrates for xylitol production. Biores Technol 200:1085–1088CrossRefGoogle Scholar
  19. 19.
    Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJM (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Biores Technol 130:168–173CrossRefGoogle Scholar
  20. 20.
    Jutakanoke R, Leepipatpiboon N, Tolieng V, Kitpreechavanich V, Srinorakutara T, Akaracharanya A (2012) Sugarcane leaves: pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 39:283–289CrossRefGoogle Scholar
  21. 21.
    Moutta RO, Chandel AK, Rodrigues RCLB, Silva MB, Rocha GJM, Silva SS (2012) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Technol 14:53–60CrossRefGoogle Scholar
  22. 22.
    Sindhu R, Kuttiraja M, Binod P, Janu K, Sukumaran R, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Biores Technol 102:10915–10921CrossRefGoogle Scholar
  23. 23.
    Lago AC, Bonomi A, Cavalett O (2012) Sugarcane as a carbon source: the Brazilian case. Biomass Bioenergy 46:5–12CrossRefGoogle Scholar
  24. 24.
    Seabra JEA, Tao L, Chuma HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenergy 34:1065–1078CrossRefGoogle Scholar
  25. 25.
    Demirbas A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434CrossRefGoogle Scholar
  26. 26.
    Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378CrossRefGoogle Scholar
  27. 27.
    Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de Metodologia para a caracterização química do bagaço de cana-de-açúcar. Quim Nova 32(6):1500–1503CrossRefGoogle Scholar
  28. 28.
    Soares Neto TG, Carvalho JA Jr, Cortez EV, Azevedo RG, Oliveira RA, Fidalgo WRR, Santos JC (2011) Laboratory evaluation of amazon forest biomass burning emissions. Atmos Environ 45:7455–7461CrossRefGoogle Scholar
  29. 29.
    França DA, Soares Neto TG, Longo KM, Carvalho JA (2012) Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere 3:164–180CrossRefGoogle Scholar
  30. 30.
    Várhegyi G, Bobály B, Jakab E, Chen H (2011) Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 25:24–32CrossRefGoogle Scholar
  31. 31.
    Rocha GJM, Nascimento VM, Gonçalves AR, Silva VFN, Martín C (2015) Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Ind Crops Prod 64:52–58CrossRefGoogle Scholar
  32. 32.
    Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230CrossRefGoogle Scholar
  33. 33.
    Vamvuka D, Zografos D (2004) Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 83:2051–2057CrossRefGoogle Scholar
  34. 34.
    Telmo C, Lousada J (2011) The explained variation by lignina and extractive contentes on higher heating value of wood. Biomass Bioenergy 35(5):1663–1667CrossRefGoogle Scholar
  35. 35.
    Ma T, Yang L, Yu H (2017) Catalytic characteristics of pyrolysis volatile matter from biomass/biomass components on a novel Ni-based catalyst supported by iron slag. J Renew Sustain 9:063101CrossRefGoogle Scholar
  36. 36.
    Kok MV, Özgür E (2013) Thermal analysis and kinetics of biomass samples. Fuel Process Technol 106:739–743CrossRefGoogle Scholar
  37. 37.
    Chen D, Zheng Y, Zhu X (2013) In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresource Technol 131:40–46CrossRefGoogle Scholar
  38. 38.
    Anca-Couce A, Berger A, Zobel N (2014) How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–240CrossRefGoogle Scholar
  39. 39.
    Jeong HM, Seo MW, Jeong SM, Na BK, Yoon SJ, Lee JG, Lee WJ (2014) Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions. Bioresource Technol 155:442–445CrossRefGoogle Scholar
  40. 40.
    Yousaf B, Liu G, Abbas Q, Wang R, Ali MU, Ullah H, Liu R, Zhou C (2017) Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass and biochar-coal co-combustion systems. Appl Energy 208:142–157CrossRefGoogle Scholar
  41. 41.
    Ullah H, Liu G, Yousaf B, Ali MU, Abbas Q, Zhou C (2017) Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal. Bioresource Technol 245:73–80CrossRefGoogle Scholar
  42. 42.
    Silva SS, Carvalho RR, Fonseca JLC, Garcia RB (1998) Extração e Caracterização de Xilanas de Sabugo s de Milho. Polímeros: Ciência e Tecnologia Abr/Jun, 25–33Google Scholar
  43. 43.
    Hon DNS, Shiraishi N (2001) Wood and cellulosic chemistry, 2nd Edn, Revised and expanded. Marcel Dekker, New York and Basel 914. ISBN 0-8247-0024-4Google Scholar
  44. 44.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Crit Rev Green Chem 12:1493–1513CrossRefGoogle Scholar
  45. 45.
    Zhou H, Meng A, Long Y, Zhang Y (2013) The pyrolysis simulation of five biomass species by hemi-cellulose, celulose and lignina based on thermogravimetric curves. Thermochim Acta 566:36–43CrossRefGoogle Scholar
  46. 46.
    Agarwal G, Lattimer B (2014) Physicochemical, kinetic and energetic investigation of coal-biomass mixture pyrolysis. Fuel Process Technol 124:174–187CrossRefGoogle Scholar
  47. 47.
    Fang X, Jia L, Yin L (2013) A weighted average global process model based on two-stage kinetics scheme for biomass combustion. Biomass Bioenergy 48:43–50CrossRefGoogle Scholar
  48. 48.
    Carrier M, Denux D, Loppinet-Serani A, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1):298–307CrossRefGoogle Scholar
  49. 49.
    Lopes MLA, Carvalho LRF (2009) Estimativas de emissão de gases provenientes da queima de cana-de-açúcar em escala regional. In: Proceedings of the 32a Reunião Anual da Sociedade Brasileira de Química (SBQ), Fortaleza, CE, Brazil, 30 May–2 June 2009Google Scholar
  50. 50.
    Arbex MA, Cançado JED, Pereira LAA, Braga ALF, Saldiva PHN (2004) Artigo de Revisão—Queima de biomassa e efeitos sobre a saúde. J Bras de Pneumol 30(2):158–175CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Eliana Vieira Canettieri
    • 1
  • Vinícius Pereira da Silva
    • 2
  • Turíbio Gomes Soares Neto
    • 2
  • Andrés Felipe Hernández-Pérez
    • 3
  • Debora Danielle Virgínio da Silva
    • 4
  • Kelly Johana Dussán
    • 4
  • Maria das Graças Almeida Felipe
    • 3
  • João Andrade de CarvalhoJr.
    • 1
  1. 1.Department of EnergySão Paulo State University (UNESP)GuaratinguetáBrazil
  2. 2.Associated Laboratory of Combustion and PropulsionNational Institute of Space Research (INPE)Cachoeira PaulistaBrazil
  3. 3.Biotechnology Department, Engineering School of Lorena - EELSão Paulo University (USP)LorenaBrazil
  4. 4.Biochemistry and Chemical Technology Department, Chemistry InstituteSão Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations