Advertisement

Spectral element-based method for a one-dimensional damaged structure with distributed random properties

  • M. R. Machado
  • S. Adhikari
  • J. M. C. Dos Santos
Review
  • 36 Downloads

Abstract

Stochastic methods have received considerable attention because they address the randomness present in structural numerical models. Uncertainties represent important events in dynamic systems regarding vibration response prediction, especially in the mid- and high-frequency ranges, when responses have higher dispersions. The spectral element method (SEM) is suitable for analysing wave propagation problems based on large frequency ranges. It is a powerful tool for structural health monitoring. This paper unifies these two techniques to use the SEM with distributed randomness in the system parameters to model structural damage. Parameters are assumed to be distributed along the structure and expressed as a random field, which are expanded in the Karhunen–Loève spectral decomposition and memoryless transformation. A frequency-dependent stochastic stiffness and mass element matrices are formulated for bending vibration. Closed-form expressions are derived by the Karhunen–Loève expansion. Numerical examples are used to address the proposed methodology.

Keywords

Spectral element method Uncertainty quantification Karhunen–Loève expansion Memoryless transformation 

References

  1. 1.
    Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  2. 2.
    Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New YorkCrossRefzbMATHGoogle Scholar
  3. 3.
    Ghanem R, Kruger RM (1996) Numerical solution of a spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129:289–303CrossRefzbMATHGoogle Scholar
  4. 4.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051CrossRefzbMATHGoogle Scholar
  5. 5.
    Banerjee JR (1997) Dynamic stiffness formulation for structural elements a general approach. Comput Struct 63(1):101–103CrossRefzbMATHGoogle Scholar
  6. 6.
    Lee U (2004) Spectral element method in structural dynamics. Inha University Press, IncheonGoogle Scholar
  7. 7.
    Doyle JF (1997) Wave propagation in structures: spectral analysis using fast discrete Fourier transforms. Mechanical engineering, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  8. 8.
    Beskos D, Narayanan G (1978) Use of dynamic influence coefficients in forced vibration problems with the aid of fast fourier transform. Comput Struct 9(2):145–150CrossRefzbMATHGoogle Scholar
  9. 9.
    Spyrakso C, Beskos D (1982) Dynamic response of frameworks by fast fourier transform. Comput Struct 15(5):495–505CrossRefzbMATHGoogle Scholar
  10. 10.
    Doyle JF (1989) Wave propagation in structures. Springer, New YorkCrossRefzbMATHGoogle Scholar
  11. 11.
    Paz M (1980) Structural dynamics: theory and computation, 2nd edn. Van Nostrand, ReinholdGoogle Scholar
  12. 12.
    Banerjee JR, Williams FW (1985) Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams. Int J Numer Methods Eng 21(12):2289–2302CrossRefzbMATHGoogle Scholar
  13. 13.
    Banerjee JR (1989) Coupled bending torsional dynamic stiffness matrix for beam elements. Int J Numer Methods En 28(6):1283–1298CrossRefzbMATHGoogle Scholar
  14. 14.
    Banerjee JR, Williams FW (1992) Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements. Comput Struct 42(3):301–310CrossRefzbMATHGoogle Scholar
  15. 15.
    Banerjee JR, Fisher SA (1992) Coupled bending torsional dynamic stiffness matrix for axially loaded beam elements. Int J Numer Methods Eng 33(4):739–751CrossRefzbMATHGoogle Scholar
  16. 16.
    Ferguson NJ, Pilkey WD (1993) Literature review of variants of dynamic stiffness method. Part 1: the dynamic element method. Shock Vib Dig 25(2):3–12CrossRefGoogle Scholar
  17. 17.
    Ferguson NJ, Pilkey WD (1993) Literature review of variants of dynamic stiffness method. Part 2: frequency-dependent matrix and other. Shock Vib Dig 25(4):3–10CrossRefGoogle Scholar
  18. 18.
    Banerjee JR, Williams FW (1995) Free-vibration of composite beams: an exact method using symbolic computation. J Aircr 32(3):636–642CrossRefGoogle Scholar
  19. 19.
    Manohar CS, Adhikari S (1998) Dynamic stiffness of randomly parametered beams. Probab Eng Mech 13(1):39–51CrossRefGoogle Scholar
  20. 20.
    Banerjee JR (1997) Dynamic stiffness formulation for structural elements: a general approach. Comput Struct 63(1):101–103CrossRefzbMATHGoogle Scholar
  21. 21.
    Adhikari S, Manohar CS (2000) Transient dynamics of stochastically parametered beams. ASCE J Eng Mech 126(11):1131–1140CrossRefGoogle Scholar
  22. 22.
    Finnveden S (1997) Spectral finite element analysis of the vibration of straight fluid filled pipes with flanges. J Sound Vib 199(1):125–154.  https://doi.org/10.1006/jsvi.1996.0602 CrossRefGoogle Scholar
  23. 23.
    Gopalakrishnan S, Chakraborty A, Mahapatra DR (2007) Spectral finite element method. Springer, New YorkzbMATHGoogle Scholar
  24. 24.
    Hashemi SM, Richard MJ, Dhatt G (1999) A new dynamic finite element (DFE) formulation for lateral free vibrations of Euler–Bernoulli spinning beams using trigonometric shape functions. J Sound Vib 220(4):601–624CrossRefGoogle Scholar
  25. 25.
    Hashemi SM, Richard MJ (2000) Free vibrational analysis of axially loaded bending-torsion coupled beams: a dynamic finite element. Comput Struct 77(6):711–724CrossRefGoogle Scholar
  26. 26.
    Doyle JF (1988) A spectrally formulated finite elements for longitudinal wave propagation. J Anal Exp Modal Anal 3:1–5Google Scholar
  27. 27.
    Ostachowicz W, Kudela P, Krawczuk M, Zak A (2012) Guided waves in structures for SHM. Wiley, London.  https://doi.org/10.1002/9781119965855 CrossRefzbMATHGoogle Scholar
  28. 28.
    Ajith V, Gopalakrishnan S (2010) Spectral element approach to wave propagation in uncertain beam structures. J Mech Mater Struct 5(4):637–659CrossRefGoogle Scholar
  29. 29.
    Adhikari S (2011) Doubly spectral stochastic finite-element method for linear structural dynamics. Am Soc Civ Eng 1:264–276Google Scholar
  30. 30.
    Doebling SW, Farrar CR, Prime M (1998) A review of vibration-based damage identification methods. Technical report, Engineering Analysis Group Los Alamos National LaboratoryGoogle Scholar
  31. 31.
    Montalvao D, Maia N, Ribeiro A (2006) A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Dig 38:10–22CrossRefGoogle Scholar
  32. 32.
    Krawczuk M (2002) Application of spectral beam finite element with a crack and iterative search technique for damage detection. Finite Elem Anal Des 80:1809–1816.  https://doi.org/10.1016/S0168-874X(01)00084-1 zbMATHGoogle Scholar
  33. 33.
    Krawczuk M, Grabowska J, Palacz M (2006) Longitudinal wave propagation. Part I: comparison of rod theories. J Sound Vib 295:461–478.  https://doi.org/10.1016/j.jsv.2005.12.048 CrossRefGoogle Scholar
  34. 34.
    Ostachowicz WM (2008) Damage detection of structures using spectral finite element method. Comput Struct 86:454–462.  https://doi.org/10.1016/j.compstruc.2007.02.004 CrossRefGoogle Scholar
  35. 35.
    Santos E, Arruda J, Santos JD (2008) Modeling of coupled structural systems by an energy spectral element method. J Sound Vib 36:1–24CrossRefGoogle Scholar
  36. 36.
    Su Z, Ye L (2009) Identification of damage using lamb waves. Springer, New YorkCrossRefzbMATHGoogle Scholar
  37. 37.
    Fabro AT, Ritto TG, Sampaio R, Arruda JRF (2010) Stochastic analysis of a cracked rod modeled via the spectral element method. Mech Res Commun 37:326–331.  https://doi.org/10.1016/j.mechrescom.2010.03.005 CrossRefzbMATHGoogle Scholar
  38. 38.
    Ng C, Veidt M, Lam H (2011) Probabilistic damage characterisation in beams using guided waves. Procedia Eng 14:490–497CrossRefGoogle Scholar
  39. 39.
    Machado M, Adhikari S, Santos J (2017) A spectral approach for damage quantification in stochastic dynamic systems. Mech Syst Signal Process 88:253–273.  https://doi.org/10.1016/j.ymssp.2016.11.018 CrossRefGoogle Scholar
  40. 40.
    Flynn EB, Todd M, Croxford J, Drinkwater B, Wilcox P (2012) Enhanced detection through low-order stochastic modeling for guided-wave structural health monitoring. Struct Health Monit 1:1–12.  https://doi.org/10.1177/1475921711414232 Google Scholar
  41. 41.
    Machado MR, Santos JMCD (2015) Reliability analysis of damaged beam spectral element with parameter uncertainties. Shock Vib.  https://doi.org/10.1155/2015/574846 Google Scholar
  42. 42.
    Schevenels GLM, Degrande G (2004) Application of the stochastic finite element method for Gaussian and non-Gaussian systems. In: Proceedings of international conference on noise and vibration engineeringGoogle Scholar
  43. 43.
    Meirovitch L (1997) Principles and techniques of vibrations. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  44. 44.
    Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw-Hill, BostonGoogle Scholar
  45. 45.
    Vio R, Andreani P, Wamsteker W (2001) Numerical simulation of non-Gaussian random fields with prescribed correlation structure. Technical report, ESA IUE Obsevatory and Max-Planck Institut fur Extraterrestrische PhysikGoogle Scholar
  46. 46.
    Phoon KK, Huang HW, Quek ST (2005) Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion. Struct Saf 20(2):188–198.  https://doi.org/10.1016/j.probengmech.2005.05.007 Google Scholar
  47. 47.
    Shields M, Deodatis G, Bocchinic P (2011) A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process. Probab Eng Mech 26:511–519CrossRefGoogle Scholar
  48. 48.
    Grigoriu M (1998) Simulation of stationary non-Gaussian translation processes. J Eng Mech 124(2):121–126.  https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(121) CrossRefGoogle Scholar
  49. 49.
    Weinberg G, Gunn L (2011) Simulation of statistical distributions using the memoryless nonlinear transformation. Technical report, DSTO Defence Science and Technology Organisation-Australia GovernmentGoogle Scholar
  50. 50.
    Rubinstein R, Kroese D (2008) Simulation and the Monte Carlo method. Wiley, New YorkzbMATHGoogle Scholar
  51. 51.
    Krawczuk M, Palacz M, Ostachowicz W (2002) The dynamic analysis of a cracked Timoshenko beam by the spectral element method. J Sound Vib 264:1139–1153.  https://doi.org/10.1016/S0022-460X(02)01987-1 CrossRefGoogle Scholar
  52. 52.
    Xiu D (2010) Numerical methods for computations: a spectral method approach. Princeton University Press, PrincetonzbMATHGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • M. R. Machado
    • 1
  • S. Adhikari
    • 2
  • J. M. C. Dos Santos
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of BrasíliaBrasíliaBrazil
  2. 2.Zienkiewicz Centre for Computational EngineeringSwansea University, Bay CampusSwanseaUK
  3. 3.Department of Computational MechanicsUniversity of CampinasCampinasBrazil

Personalised recommendations